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What's in it for me?

o Transformers are fun stuff! enjoy this technical ride
o This new architecture may play a huge role in deep learning (DL) for Vision.

o Cross-overs between Language and Vision,
o relevant for our work on image + text (e.g., internet images, intelligence).
o fostering collaboration with NLP folks (e.g., TNO Data Science).

o Many ideas that are applicable to other Vision tasks,

o attention (e.g., focus on details, visual feedback).

o positional encoding (e.g., relations between objects).
o sequential analysis (e.g., evolving situations).

o New forms of learnable Computer Vision become possible!

° e.g., interpret situations by objects in context.




What's in it for us”?

planting a seed for good afterthoughts and new ideas or already during & after this presentation!
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Today's ride

The focus will be more on the ideas and
o Transformer their potential impact.

o Model, Attention, Positional encoding, Training Less on the implementation and results.

You can always check these yourself, via

o Vision the references at each slide.

o Image classification

o Object detection

o Few-shot generalization
o Activity classification

o Summary & Discussion

o References

o including further reading (advanced)




History of Transtormers

Beating CNNs
“Attention is all you on Large-scale Vision
need” (Google) Tasks
" "
2017 2018 - 2020 2021

[
Introduction in various Vision Tasks
(scientific explorations, hybrid CNN-Transformers)
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The lllustrated Transformer - Jay Alammar - Visualizing machine learning one concept at a time. (jalammar.github.io)



http://jalammar.github.io/illustrated-transformer/

Encoder & Decoder

o each encoder/decoder in the stack has its own weights (no sharing)

° two main components:

o Attention (complex)
o Feed-forward (simple)
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The lllustrated Transformer - Jay Alammar - Visualizing machine learning one concept at a time. (jalammar.github.io)



http://jalammar.github.io/illustrated-transformer/
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at the input level, each word is encoded by
a vector Xi of 512D by a label embedding
(e.g., word2vec)

The lllustrated Transformer - Jay Alammar - Visualizing machine learning one concept at a time. (jalammar.github.io)



http://jalammar.github.io/illustrated-transformer/
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http://jalammar.github.io/illustrated-transformer/
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the original Transformer uses Global Attention

Transformers are Graph Neural Networks
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https://theaisummer.com/attention/
https://graphdeeplearning.github.io/post/transformers-are-gnns/

Attention: Query, Key, Value
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The lllustrated Transformer - Jay Alammar - Visualizing machine learning one concept at a time. (jalammar.github.io)



http://jalammar.github.io/illustrated-transformer/

Attention computation

Input

Embedding |:|:|:|:|
Queries g [T
Keys T
Values Djj

Q T Score Qi e

Softmax( HH - @ ) + Divide by 8 (V)
NG

Softmax

Softmax

X [T 1]

qi ®

Sum [T 1]

The lllustrated Transformer

= word embedding (e.g., word2vec)

by multiplication with Wq, Wk, Wv

(implementation detail to stabilize training)

(always divide same amount of attention)

linear transformation to obtain new
representation after the self-attention

combined representation of word and other words



http://jalammar.github.io/illustrated-transformer/
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The lllustrated Transformer



http://jalammar.github.io/illustrated-transformer/
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http://jalammar.github.io/illustrated-transformer/

Decoding
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o decoders only look at earlier words

o masking future positions via (-inf) before softmax (so they don’t count)

The lllustrated Transformer



http://jalammar.github.io/illustrated-transformer/
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The lllustrated Transformer



http://jalammar.github.io/illustrated-transformer/

Training

o loss on the output set of words by standard cross-entropy in end-to-end training scheme

Target Model Outputs Trained Model Outputs
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The lllustrated Transformer Transformers Explained Visually (Part 2): How it works, step-by-step | by Ketan Doshi | Towards Data Science



https://towardsdatascience.com/transformers-explained-visually-part-2-how-it-works-step-by-step-b49fa4a64f34
http://jalammar.github.io/illustrated-transformer/
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https://arxiv.org/abs/1706.03762

Translating these ideas into
Computer Vision
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[2010.11929] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (arxiv.orq)



https://arxiv.org/abs/2010.11929

Vision Transtormer (ViT)
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(ViT-H/14)  (ViT-L/16)  (ViT-L/16) (ResNetl52x4) (EfficientNet-L2)
ImageNet 88.55+0.014 87.76 £0.03 85.30+£0.02 87.54 +0.02 88.4/88.5*
ImageNet Real. 90.72+0.05 90.54+0.03 88.62+0.05 90.54 90.55
CIFAR-10 99.50+0.06 99.42+0.03 99.15+0.03 99.37 +0.06 -
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[2010.11929] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (arxiv.orq)



https://arxiv.org/abs/2010.11929

Vision Transtormer (ViT)

o Specifically, if ViT is trained on datasets with more than 14M
images it can approach or beat state-of-the-art CNNs.

o If not, you better stick with ResNets or EfficientNets.

o Even though many positional embedding schemes were
applied, no added value was found

o Therefore: Learnable position embedding

Vision Transformer (ViT)
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https://theaisummer.com/vision-transformer/ [2010.11929] An Image is Worth 16x16 Words



https://theaisummer.com/cnn-architectures/
https://arxiv.org/abs/2010.11929
https://theaisummer.com/vision-transformer/

Long-range relations!

= attention heads
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(CNN)

24 Conv layers with 3x3 kernel and single stride

Receptive Field Growth

[2010.11929] An Image is Worth 16x16 Words



https://arxiv.org/abs/2010.11929
https://theaisummer.com/vision-transformer/

Visual Transtormer (£ViT) ——— 4 ‘ 4 R
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Tokens-To-Token Vision Transtormers (T2T-ViT)

o enable training on Imagenet only
o deep-narrow architecture to capture local image features (which the ViT fail to do)

o tokens-to-token model to capture features in neighborhoods

Data-efficient Image Transformer

o enable training on Imagenet only
o trained in ~3 days

o by student-teacher setup with CNN as a teacher

[2006.03677] Visual Transformers: Token-based [2101.11986] Tokens-to-Token ViT [2012.12877] Training data-efficient image transformers



https://arxiv.org/abs/2101.11986
https://arxiv.org/abs/2012.12877
https://arxiv.org/abs/2006.03677

Object Detection (DETR)

o

detection transformer: relations between objects (co-occurrence!)

(e}

decoders: ‘translate’ representations to boxes with labels

o

fixed-size set of N predictions (N >> #objects, many 'no object’ predictions)

o

end-to-end training; removing hand-designed components (e.g., anchors, non-max suppression)
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backbone h encoder

I
set of image features::
I

transformer
decoder

TITN

= learned object priors (kind of anchors)

transformer
encoder
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[2005.12872] End-to-End Object Detection with Transformers (arxiv.orq)



https://arxiv.org/abs/2005.12872

Object-centric: Slot Attention

k, v ATTENTION:

SLOTS COMPETE
FOR INPUT KEYS

-

o object centric: localized attributes -

-

o standard DL will learn spurious correlations:

°o e.g., yellow = contains cube (=spurious, coincidental)

"

o force learning of localized “slot” for “gray + cube”, "yellow + cylinder’

!

o cutting the spurious correlation “yellow ~ cube”

o disentangle!

FEATURE MAPS
+ POSITION EMB.

o slots

o compete for explaining parts of the input via a softmax-based

" 7 )

AL

attention mechanism

°© inputs can be pixels, CN N, etc. Image Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7

e ObjeCtS ----_---

[2006.15055] Object-Centric Learning with Slot Attention (arxiv.org)



https://arxiv.org/abs/2006.15055

Space-time Transformer

o TimeSformer

o video
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o space-time attention
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"divided S-T attention”

works best

[2102.05095] Is Space-Time Attention All You Need for Video Understanding? (arxiv.org)



https://arxiv.org/abs/2102.05095
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o

Human-Object Interactions

Graph Construction

attention (= actor * context) :
Input Clip

multi-heads (=2)

positional encoding

largely CNN-based (video, I3D)

not fully Transformer (hybrid)

[ Learning relations

between actor and context

-

Adding context
to actor

o yet very useful and effective (perf.&/is.)

patches as ‘words'’ interactions actor (red) vs. context (grid)
(encoded by I13D) (fully connected)

= learning attention

learned attention

sum

= repr.

+= acc.

Spot What Matters: Learning Context Using GCN



https://github.com/micts/acgcn

Summary &

Discussion




Summary

o Transformers are “"here to stay”, also for Vision

o with a large community working on its developments

(appeared yesterday,
CVPR 2021, UvA)

Untrimmed query video



Summary

(e}

Transformers are “here to stay”, also for Vision

o with a large community working on its developments

o

Many opportunities for applications that we're working on already

o objects in context (scene & situation understanding)
o spatially distant relations / interactions (sports analysis)

(0]

New possibilities

o long range temporal interactions (scenario recognition)

(0]

Inspiration for new components

o attention, positional encoding, modeling patches & frames as a sequence

o

Training can be difficult
o not as efficient as finetuning CNN, but steps are being made

o no common best practices yet, but that will come




Tnx tfor your Attention ©

Hope it was useful!

(Some opportunities for Intelligent Imaging on next slide)




Opportunities for Intelligent Imaging

o long-range interactions in the image

o interesting! e.g., sport: location / relation between (distant) players
o can we enforce sparsity? (Wouter) - maybe by slots? see next point

o better generalization by slot attention

o few-shot learning

o relations between objects

o scene graphs
o can we include prior knowledge? (Fieke)

o other applications?




Refterences - Model

o The lllustrated Transformer - Jay Alammar - Visualizing machine learning one concept at a time. (jalammar.github.io)

[best starting point for introduction]

o [1706.03762] Attention Is All You Need (arxiv.org) [original paper]

o Transformers Explained Visually (Part 2): How it works, step-by-step | by Ketan Doshi | Towards Data Science [masking]

o Attention? Attention! (lilianweng.github.io) [attention mechanism: key, value, query]

o How Attention works in Deep Learning: understanding the attention mechanism in sequence models | Al Summer
(theaisummer.com)

o CSC421/2516 Lecture 16: Attention (toronto.edu) [incl. image attention in image-caption models]

o Transformers are Graph Neural Networks | NTU Graph Deep Learning Lab [sentences are fully-connected word graphs]
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Spot What Matters: Learning Context Using GCN
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