TRANSFORMERS FOR VISION

Gertjan Burghouts

Deep Learning SOTA sessions

<u>Credits</u> (Thank You!): Wouter, Arthur, Fieke, Raimon, David, Ombretta, Frank (LwLL student)

What's in it for me?

- Transformers are **fun** stuff! enjoy this technical ride
- This new architecture may play a **huge** role in deep learning (DL) for Vision.
- Cross-overs between Language and Vision,
 - relevant for our work on image + text (e.g., internet images, intelligence).
 - fostering collaboration with NLP folks (e.g., TNO Data Science).
- Many ideas that are applicable to other Vision tasks,
 - **attention** (e.g., focus on details, visual feedback).
 - positional encoding (e.g., relations between objects).
 - sequential analysis (e.g., evolving situations).
- **New forms** of learnable Computer Vision become possible!
 - e.g., interpret situations by objects in context.

What's in it for *us*?

planting a seed for good afterthoughts and **new ideas**

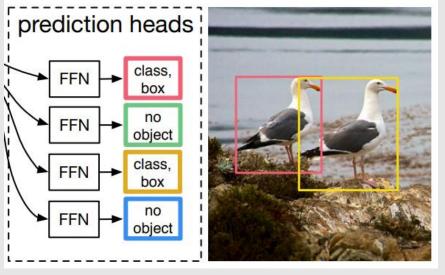
or already during & after this presentation!

Scope

Image classification

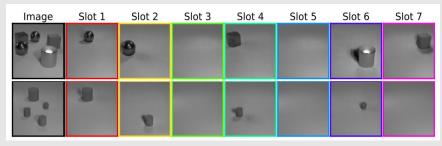
(Google AI)

Object detection

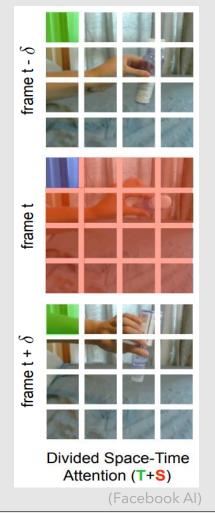


(Facebook AI)

Better generalization to new objects



Activity classification



(Google Brain A'dam)

Today's ride

• Transformer

• Model, Attention, Positional encoding, Training

• Vision

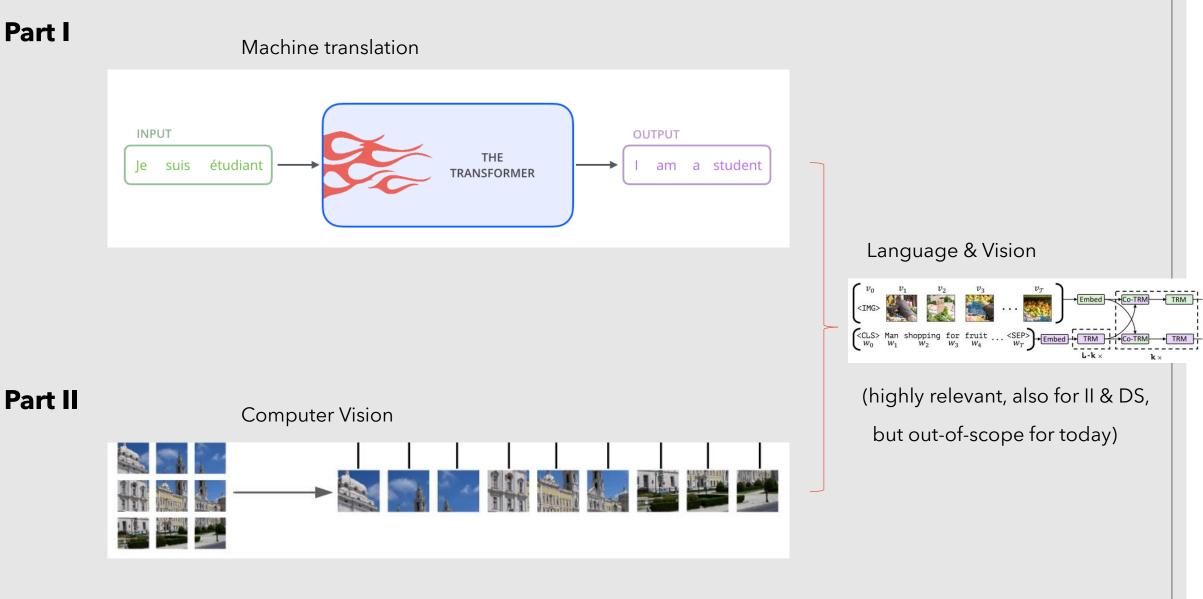
- Image classification
- Object detection
- Few-shot generalization
- Activity classification
- Summary & Discussion
- References
 - including further reading (advanced)

The focus will be more on the **ideas** and their potential **impact**.

Less on the implementation and results.

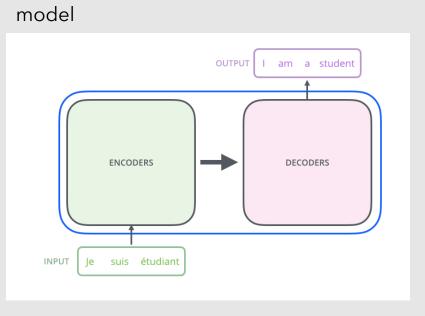
You can always check these yourself, via the references at each slide.

History of Transformers

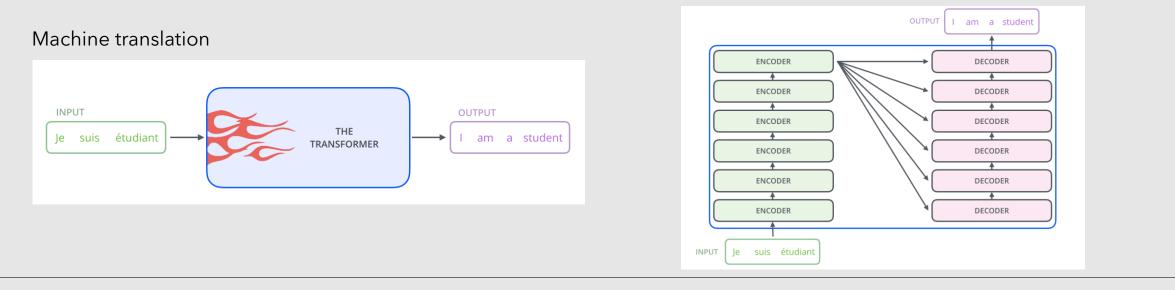


Architecture

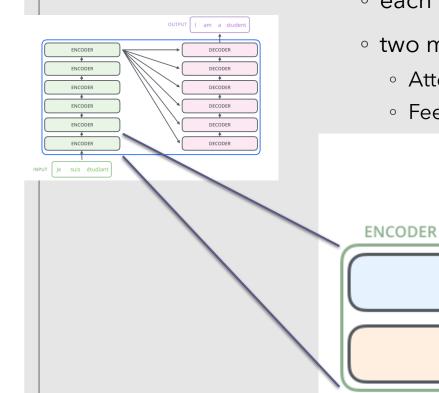
• Natural Language Processing



stacked encoders/decoders



Encoder & Decoder

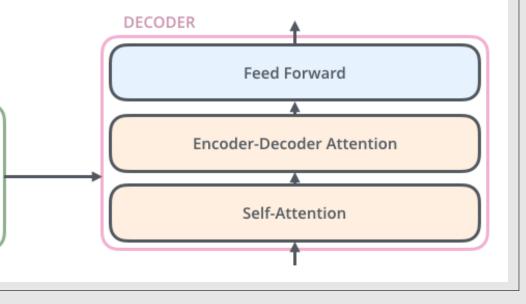


• each encoder/decoder in the stack has its own weights (no sharing)

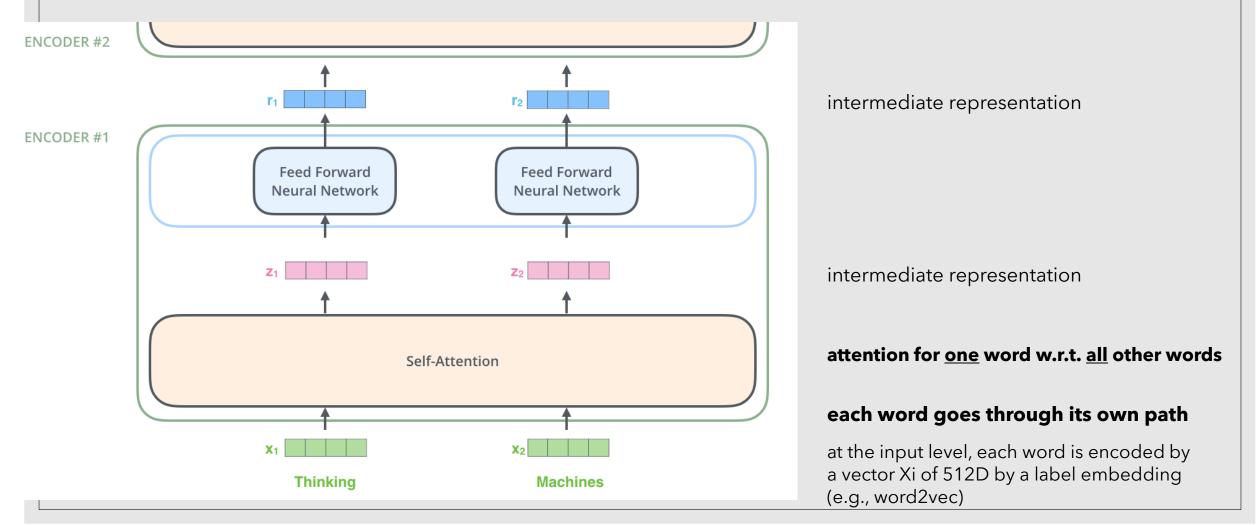
- two main components:
 - Attention (complex)
 - Feed-forward (simple)

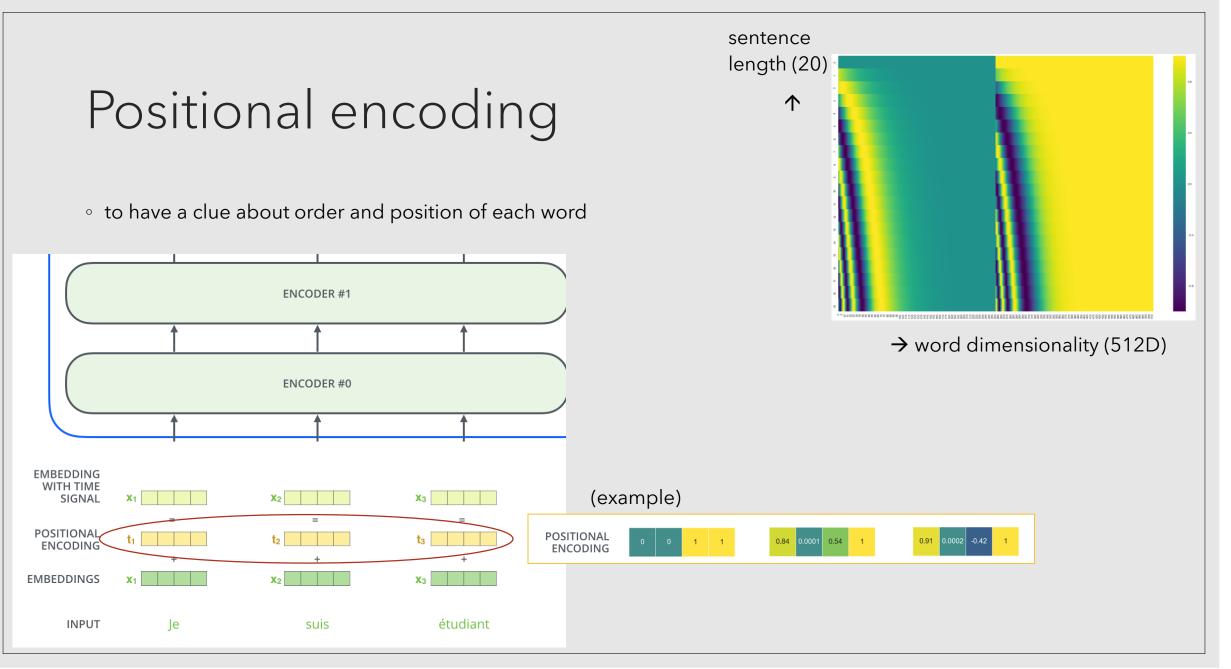
Feed Forward

Self-Attention



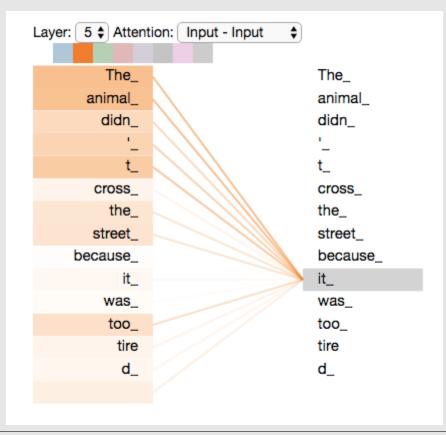
Architecture

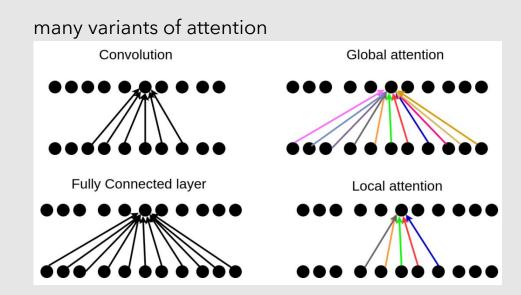




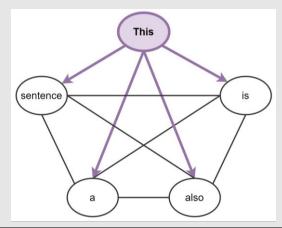
Self-Attention

effect of other words on current word





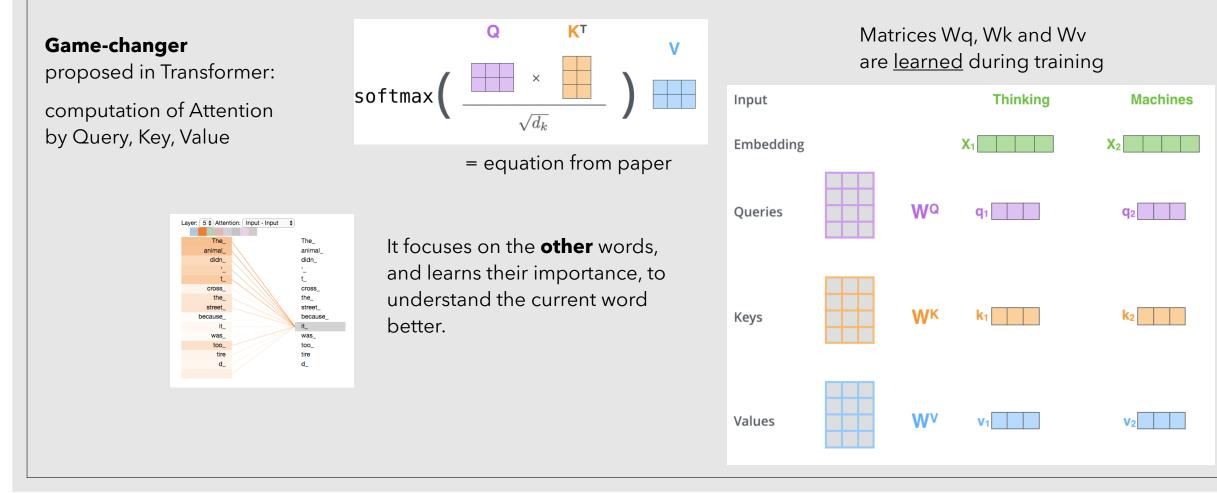
the original Transformer uses Global Attention



sentence = fullyconnected graph of words

Graph Attention network (GAT)

Attention: Query, Key, Value



Attention computation

Input	Thinking	Machines	
Embedding	X1	X2	
Queries	q 1	q ₂	
Keys	k 1	k ₂	
Values	V1	V2	
Score	$q_1 \cdot k_1 = 112$	q ₁ • k ₂ = 96	
Divide by 8 ($\sqrt{d_k}$)	14	12	
Softmax	0.88	0.12	
Softmax X Value	V1	V2	
Sum	Z 1		

= word embedding (e.g., word2vec)

by multiplication with Wq, Wk, Wv

(implementation detail to stabilize training)

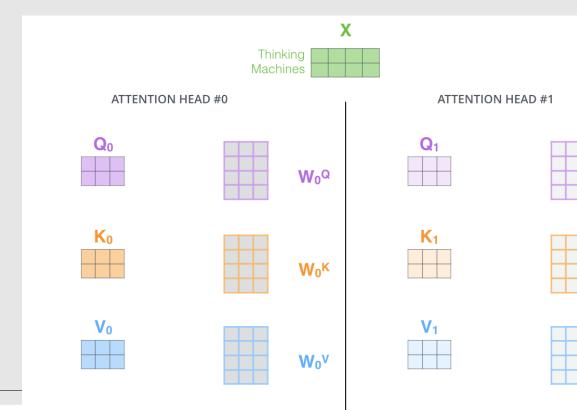
(always divide same amount of attention)

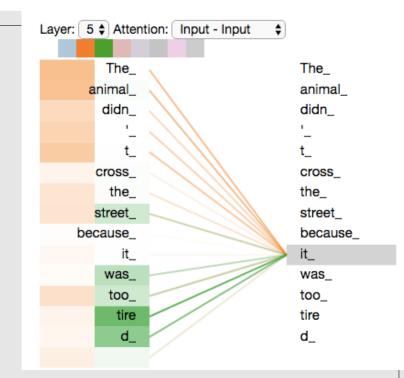
linear transformation to obtain new representation after the self-attention

combined representation of word and other words

Multi-head attention

- each head learns a different focus
- "representation subspaces"





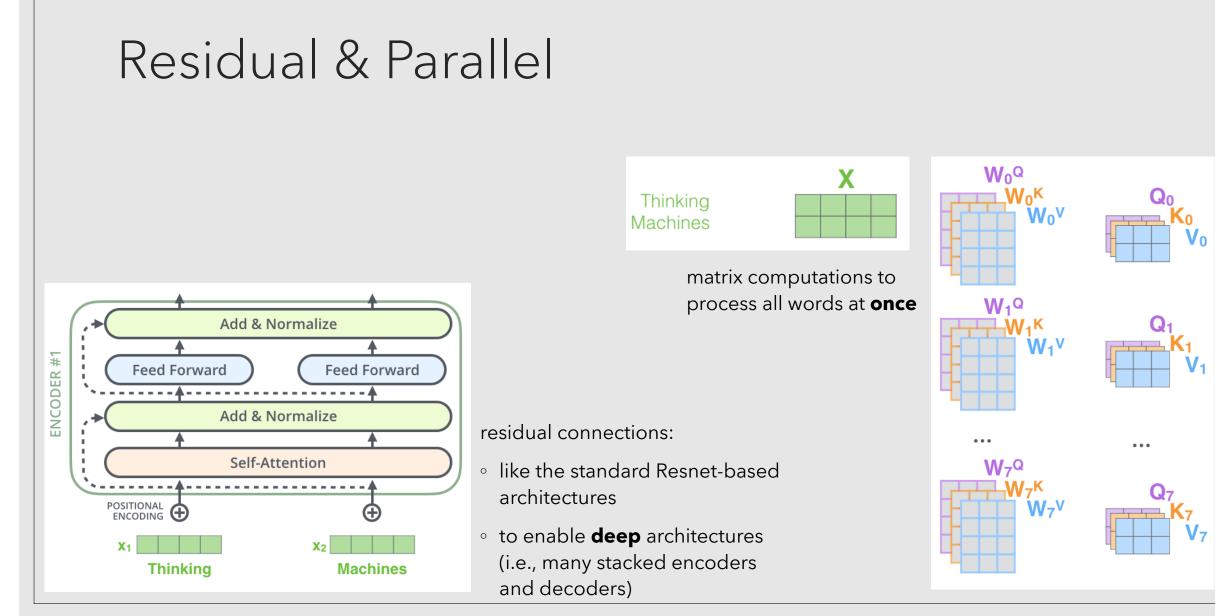
original Transformer has 8 attention heads

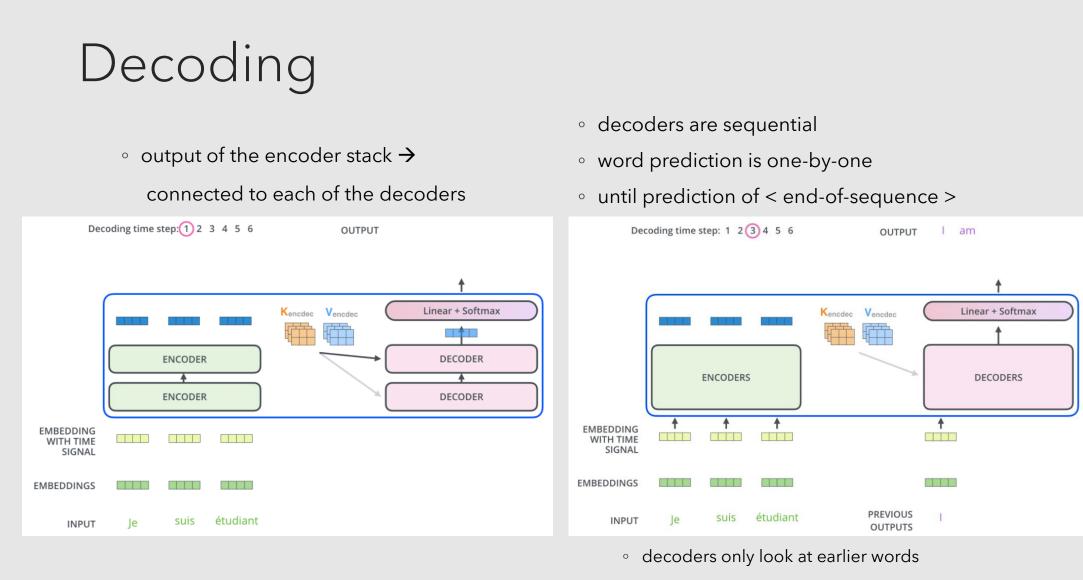
W₁Q

W₁K

W₁v

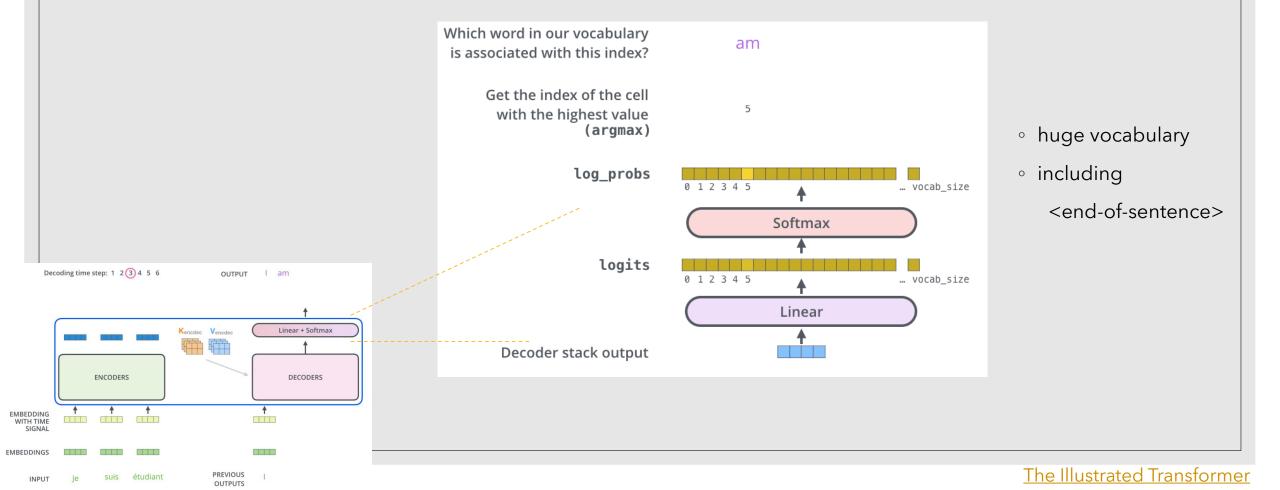
representation = concatenation of the vectors from all attention heads





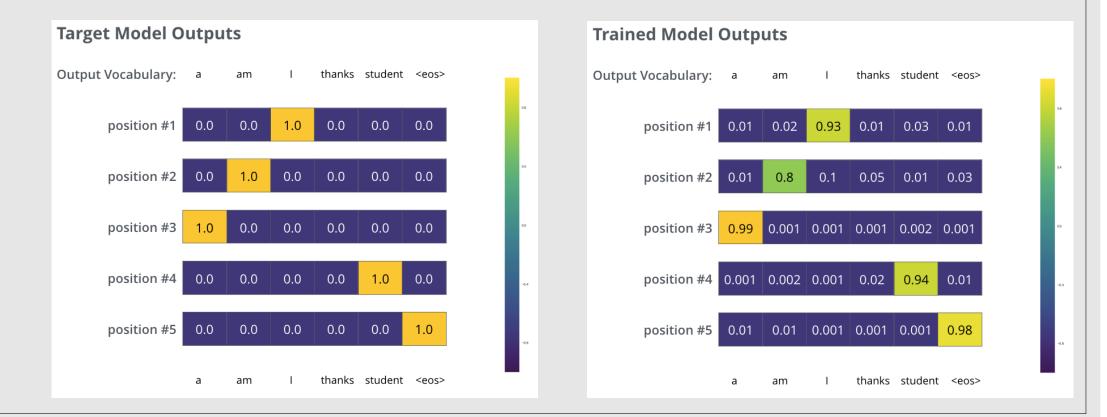
• masking future positions via (-inf) before softmax (so they don't count)

Predicting each word



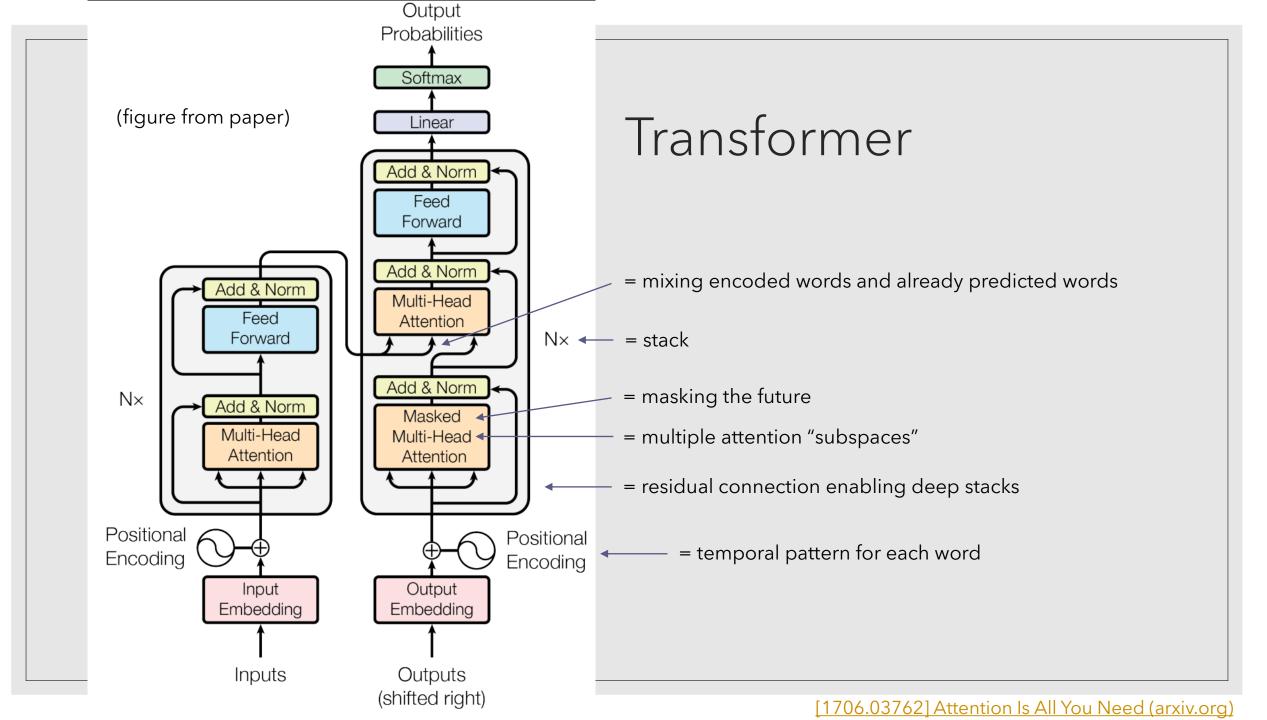
Training

• loss on the output set of words by standard cross-entropy in end-to-end training scheme



The Illustrated Transformer

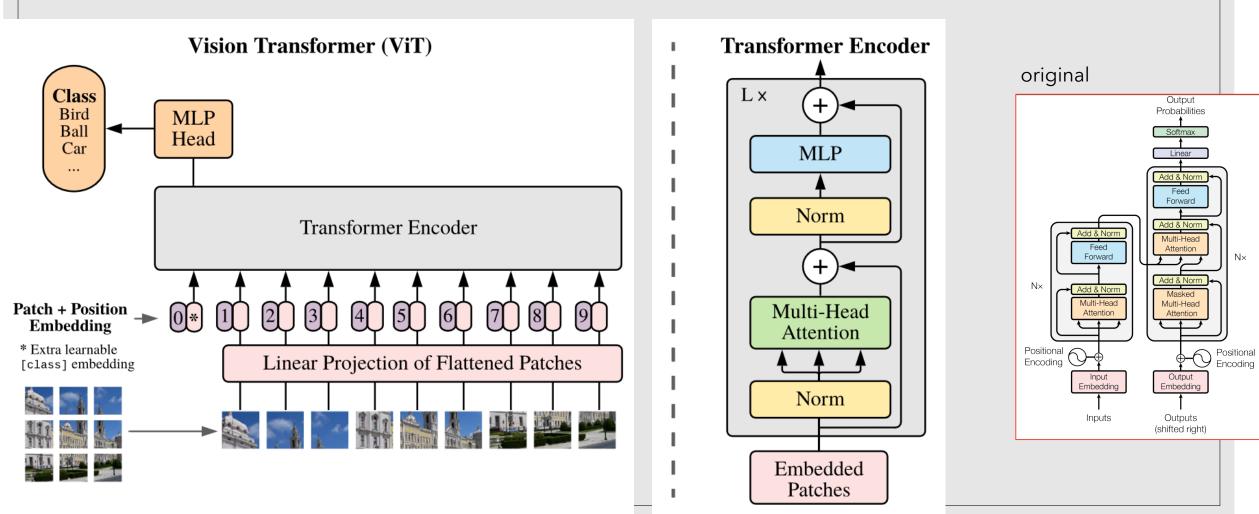
Transformers Explained Visually (Part 2): How it works, step-by-step | by Ketan Doshi | Towards Data Science



Translating these ideas into Computer Vision

The Concept

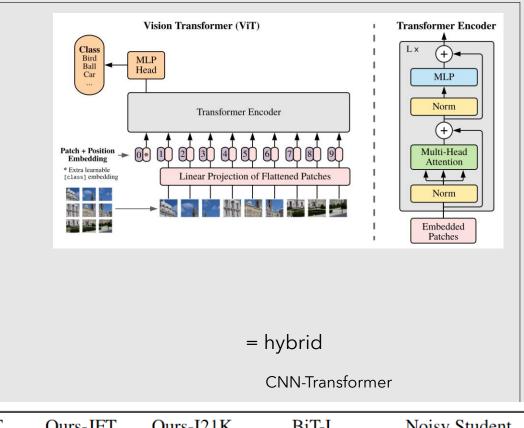
<u>no</u> decoder



[2010.11929] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (arxiv.org)

Vision Transformer (ViT)

- first full Transformer architecture for Vision
- 16 x 16 patches as 'words'
 - each patch = 16x16x3 (=768d)
- lack inductive biases by CNN (translation)
- has other inductive bias: permutation invariance
- huge pre-training (Imagenet doesn't suffice)



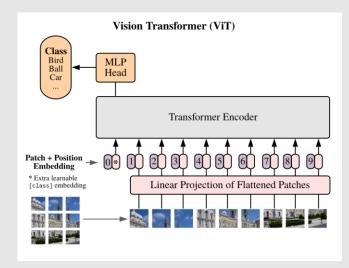
	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21K (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	$88.4/88.5^{*}$
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

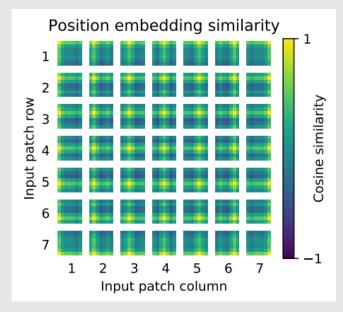
[2010.11929] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (arxiv.org)

Vision Transformer (ViT)

- Specifically, if ViT is trained on datasets with more than 14M images it can approach or beat state-of-the-art CNNs.
- If not, you better stick with ResNets or EfficientNets.

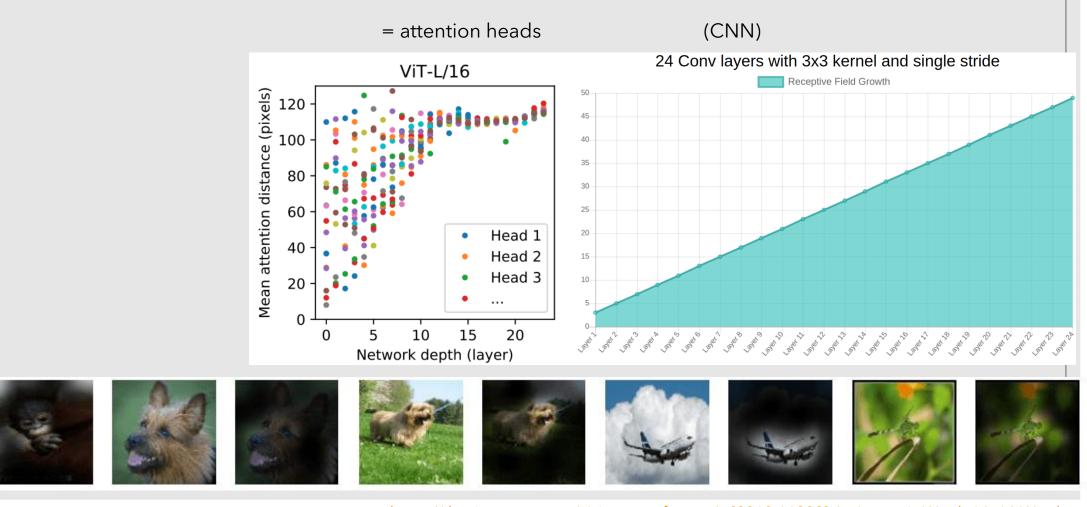
- Even though many positional embedding schemes were applied, no added value was found
- Therefore: Learnable position embedding





https://theaisummer.com/vision-transformer/ [2010.11929] An Image is Worth 16x16 Words

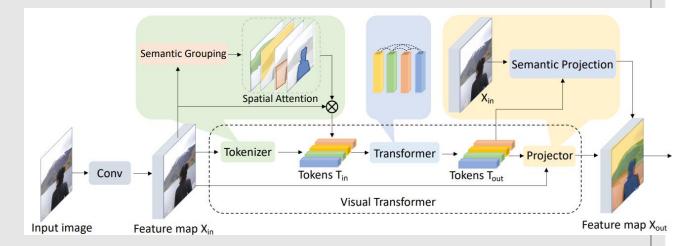
Long-range relations!



https://theaisummer.com/vision-transformer/ [2010.11929] An Image is Worth 16x16 Words

Visual Transformer (≠ViT)

- hybrid model of CNN (= tokens) &
- Transformer (= model relations between tokens)



Tokens-To-Token Vision Transformers (T2T-ViT)

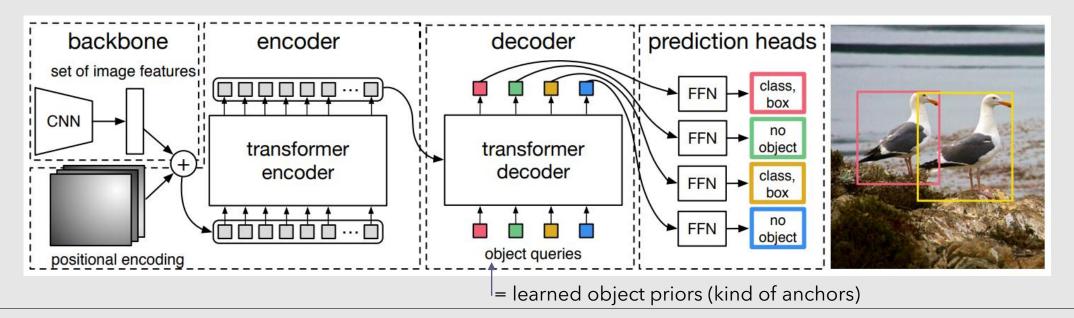
- enable training on Imagenet only
- deep-narrow architecture to capture local image features (which the ViT fail to do)
- $\circ\;$ tokens-to-token model to capture features in neighborhoods

Data-efficient Image Transformer

- enable training on Imagenet only
- trained in ~3 days
- $\circ~$ by student-teacher setup with CNN as a teacher

Object Detection (DETR)

- detection transformer: relations between objects (co-occurrence!)
- decoders: 'translate' representations to boxes with labels
- fixed-size set of N predictions (N >> #objects, many 'no object' predictions)
- end-to-end training; removing hand-designed components (e.g., anchors, non-max suppression)



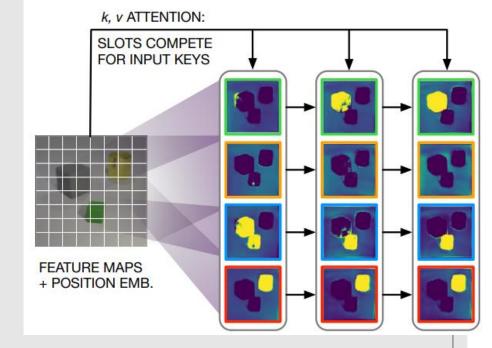
[2005.12872] End-to-End Object Detection with Transformers (arxiv.org)

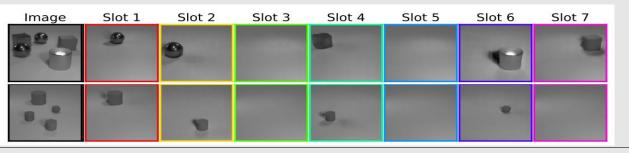
Object-centric: Slot Attention

- object centric: localized attributes
 - standard DL will learn spurious correlations:
 - e.g., yellow \rightarrow contains cube (=spurious, coincidental)
 - force learning of localized "**slot**" for "gray + cube", "yellow + cylinder"
 - cutting the spurious correlation "yellow ~ cube"
 - disentangle!

• <u>slots</u>

- compete for explaining parts of the input via a softmax-based attention mechanism
- inputs can be pixels, CNN, etc.
- achievement: better generalization
 - to new scenes and objects

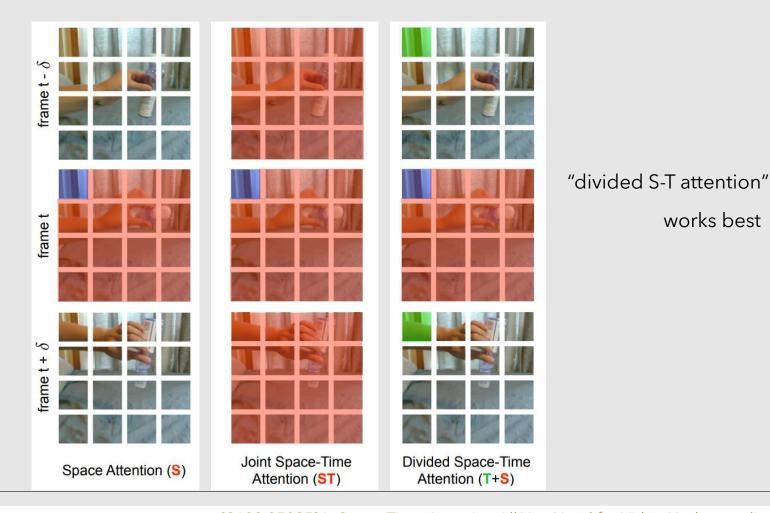




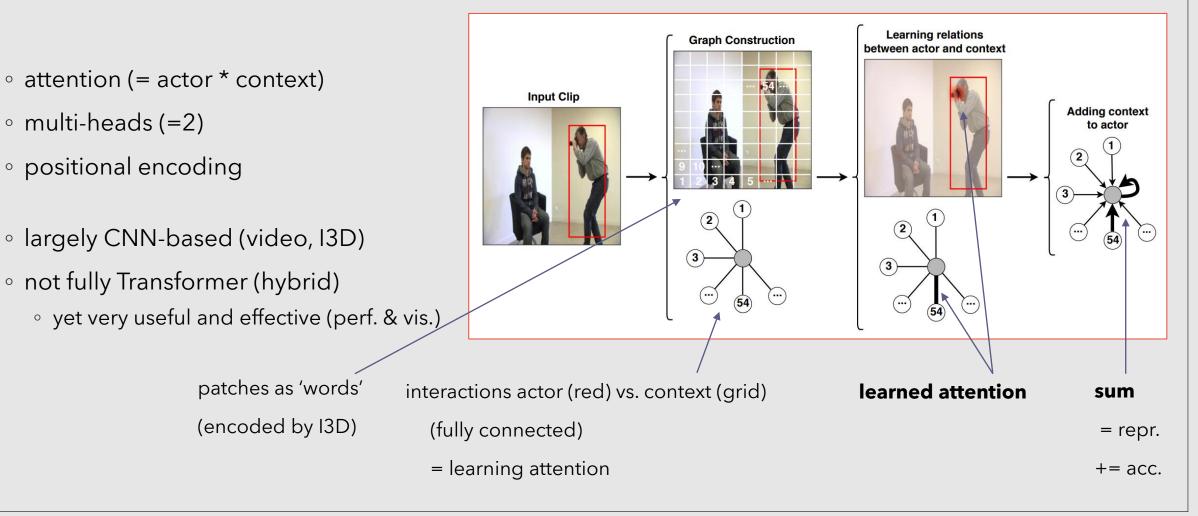
[2006.15055] Object-Centric Learning with Slot Attention (arxiv.org)

Space-time Transformer

- TimeSformer
- video
- space-time attention



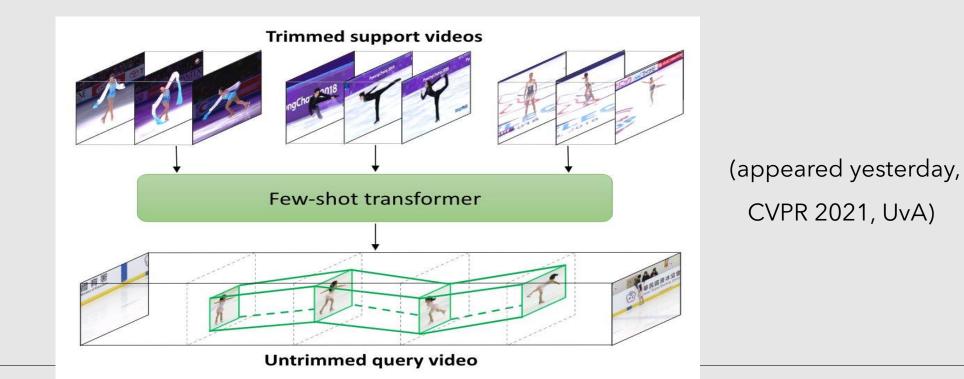
[2102.05095] Is Space-Time Attention All You Need for Video Understanding? (arxiv.org)



Summary & Discussion

Summary

- Transformers are "here to stay", also for Vision
 - with a large community working on its developments



Summary

- Transformers are "here to stay", also for Vision
 - with a large community working on its developments
- Many opportunities for applications that we're working on already
 - objects in context (scene & situation understanding)
 - spatially distant relations / interactions (sports analysis)
- New possibilities
 - long range temporal interactions (scenario recognition)
- Inspiration for new components
 - attention, positional encoding, modeling patches & frames as a sequence
- Training can be difficult
 - $\,\circ\,$ not as efficient as finetuning CNN, but steps are being made
 - no common best practices yet, but that will come

Tnx for *your* Attention ③ Hope it was useful!

(Some opportunities for Intelligent Imaging on next slide)

Opportunities for Intelligent Imaging

long-range interactions in the image

- interesting! e.g., sport: location / relation between (distant) players
- can we enforce sparsity? (Wouter) maybe by slots? see next point
- better generalization by slot attention
 - few-shot learning
- relations between objects
 - scene graphs
 - can we include prior knowledge? (Fieke)

• other applications?

References - Model

- <u>The Illustrated Transformer Jay Alammar Visualizing machine learning one concept at a time. (jalammar.github.io)</u>
 [best starting point for introduction]
- [1706.03762] Attention Is All You Need (arxiv.org) [original paper]
- Transformers Explained Visually (Part 2): How it works, step-by-step | by Ketan Doshi | Towards Data Science [masking]
- Attention? Attention! (lilianweng.github.io) [attention mechanism: key, value, query]
- <u>How Attention works in Deep Learning: understanding the attention mechanism in sequence models | AI Summer (theaisummer.com)</u>
- <u>CSC421/2516 Lecture 16: Attention (toronto.edu)</u> [incl. image attention in image-caption models]
- Transformers are Graph Neural Networks NTU Graph Deep Learning Lab [sentences are fully-connected word graphs]

References - Vision

- [2010.11929] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (arxiv.org)
- [2006.03677] Visual Transformers: Token-based Image Representation and Processing for Computer Vision (arxiv.org)
- [2101.11986] Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet (arxiv.org)
- [2012.12877] Training data-efficient image transformers & distillation through attention (arxiv.org)
- [2005.12872] End-to-End Object Detection with Transformers (arxiv.org) [object detection, DETR]
- [2006.15055] Object-Centric Learning with Slot Attention (arxiv.org) [object segmentation]
- <u>GitHub micts/acgcn: Code for the paper "Spot What Matters: Learning Context Using Graph Convolutional Networks for</u> <u>Weakly-Supervised Action Detection"</u> [our work]
- [2102.05095] Is Space-Time Attention All You Need for Video Understanding? (arxiv.org) [video, multi-frame, TimeSformer]
- [2103.01209] Generative Adversarial Transformers (arxiv.org) [image generation, Gansformer]

References - Advanced (Fieke, Raimon, Wouter)

- [2103.14030] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (arxiv.org)
- [2006.08084] Neural Execution Engines: Learning to Execute Subroutines (arxiv.org) [learning programming by sequences of smaller routines]
- <u>Neuro-Symbolic Deductive Reasoning for Cross-Knowledge Graph Entailment (aaai-make.info)</u> [infer the set of all facts that are a logical consequence of current and potential facts of a knowledge graph]
- paper4.pdf (ceur-ws.org) [named entities and relations]
- <u>[2002.05544] Superpixel Image Classification with Graph Attention Networks (arxiv.org)</u> [beyond rectangular-gridded images, such as 360-degree field of view panoramas]
- <u>Reasoning-RCNN: Unifying Adaptive Global Reasoning Into Large-Scale Object Detection (thecvf.com)</u> [scaling DETR to Visual Genome sized datasets with >1000 object classes]
- [2103.04037] Perspectives and Prospects on Transformer Architecture for Cross-Modal Tasks with Language and Vision (arxiv.org) [visuolinguistic cross-modal tasks]
- [1908.02265] ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks (arxiv.org)
- [2102.10772] Transformer is All You Need: Multimodal Multitask Learning with a Unified Transformer (arxiv.org)

Appendix

Action Detection

