
February 28, 2024 10:58 WSPC/INSTRUCTION FILE output

International Journal of Semantic Computing

© World Scientific Publishing Company

Language-Based Augmentation to Mitigate Shortcut Learning in

Object-Goal Navigation

Dennis Hoftijzer

EEMCS, University of Twente, Drienerlolaan 5

Enschede, Overijssel, The Netherlands

dennishoftijzer@gmail.com

Gertjan Burghouts

Intelligent Imaging, TNO, Oude Waalsdorperweg 63

Den Haag, Zuid-Holland, The Netherlands
gertjan.burghouts@tno.nl

Luuk Spreeuwers

EEMCS, University of Twente, Drienerlolaan 5

Enschede, Overijssel, The Netherlands
l.j.spreeuwers@utwente.nl

Received (February 28, 2024)

Revised (Day Month Year)

Accepted (Day Month Year)

Deep Reinforcement Learning (DRL) has shown great potential in enabling robots to find
certain objects (e.g., ‘find a fridge’) in environments like homes or schools. This task is

known as Object-Goal Navigation (ObjectNav). DRL methods are predominantly trained

and evaluated using environment simulators. Although DRL has shown impressive re-
sults, the simulators may be biased or limited. This creates a risk of shortcut learning,

i.e., learning a policy tailored to specific visual details of training environments. We aim

to deepen our understanding of shortcut learning in ObjectNav, its implications and
propose a solution. We design an experiment for inserting a shortcut bias in the appear-

ance of training environments. As a proof-of-concept, we associate room types to specific
wall colors (e.g., bedrooms with green walls), and observe poor generalization of a state-
of-the-art (SOTA) ObjectNav method to environments where this is not the case (e.g.,

bedrooms with blue walls). We find that shortcut learning is the root cause: the agent

learns to navigate to target objects, by simply searching for the associated wall color of
the target object’s room. To solve this, we propose Language-Based (L-B) augmentation.

Our key insight is that we can leverage the multimodal feature space of a Vision-Language
Model (VLM) to augment visual representations directly at the feature-level, requiring
no changes to the simulator, and only an addition of one layer to the model. Where

the SOTA ObjectNav method’s success rate drops 69%, our proposal has only a drop of
23%. Code is available at https://github.com/Dennishoftijzer/L-B_Augmentation

Keywords: Vision-based Navigation; Deep Reinforcement Learning; Vision-Language

1

https://github.com/Dennishoftijzer/L-B_Augmentation

February 28, 2024 10:58 WSPC/INSTRUCTION FILE output

2 Dennis Hoftijzer, Gertjan Burghouts, Luuk Spreeuwers

Training environment

Sofa room is blue

S
O

T
A

 O
b

je
ct

N
a
v

L
-B

 a
u

g
m

e
n

ta
ti

o
n

Instruction: “Find a sofa”

Skips sofa room

Testing environment

Sofa room is green

Navigates to sofa room

Navigates to sofa room

Navigates to sofa room

Fig. 1: We propose Language-Based (L-B) augmentation to generalize better

to scenes with different wall colors. In this example, we interchange the wall color of

the bedroom and living room, causing the SOTA objectNav method [1] to look for

the sofa in the blue bedroom (wrong). With our augmentations, this is mitigated.

1. Introduction

Humans can easily find certain objects (e.g. ‘find a fridge’) in complex environ-

ments we have not seen before, such as a friend’s house. We effortlessly avoid any

obstacles but also reason about the unseen environment to decide which room to

explore next e.g., ‘where is a fridge most likely located?’. The embodied-AI (E-AI)

community has made great strides by learning embodied agents (or ‘virtual robot’)

such skills using Deep Reinforcement Learning (DRL) in a task called Object-Goal

Navigation (ObjectNav) [2]. Despite good progress, DRL relies on gathering expe-

rience over millions (or billions) of iterations, making it impossible to learn in real-

world environments. Therefore, research has been drawn to E-AI simulators [3–6],

which allow for easily training agents in various simulated 3D indoor environments.

February 28, 2024 10:58 WSPC/INSTRUCTION FILE output

Language-Based Augmentation to Mitigate Shortcut Learning in ObjectNav. 3

However, subtle, but detrimental, dataset biases might arise in E-AI simulators due

to data collection artifacts, limitations in rendering, or simply unintended biases

the simulator designer is not aware of. For instance, all kitchens in training envi-

ronments might have a tiled floor. Consequently, training in E-AI simulators creates

a profound risk of shortcut learning [7]: learning a simple, non-essential policy, tai-

lored to specific details of the simulated environment, rather than learning any

semantic reasoning or task-related skills. Efficient object-goal navigation involves

learning useful semantic priors such as object-room relations (e.g., a fridge is in

the kitchen), however can easily lead to unintended shortcuts (e.g., fridge is located

near a tiled floor), which fail to generalize to environments where the shortcuts are

no longer valid.

In this work, we deepen our understanding of shortcut learning in ObjectNav,

its implications and propose a solution. First, we introduce an out-of-distribution

(o.o.d.) generalization test. We insert a dataset bias in the appearance of training

environments, which offers the agent a shortcut pathway for finding a given target

object. As a proof-of-concept of such a shortcut bias, we associate each room type

to a unique wall color i.e., kitchens have red walls, bedrooms have green walls

and so forth. Using our setup, we are able to evaluate o.o.d. generalization of a

state-of-the-art (SOTA) ObjectNav method [1] to environments where we change

wall colors (e.g. kitchens now have blue walls). As a result, we find that (1) only

changing wall colors degrades performance significantly, and (2) shortcut learning

is the root cause. The agent learns to navigate towards target objects by simply

searching for the wall color associated with the target object’s room.

Secondly, we wish to bring more insight as to why the agent learns such a

shortcut strategy by further analyzing the visual representations within the agent’s

architecture. We train a simple neural classifier on visual representations extracted

from sampled RGB observations to classify room type. We train on biased combi-

nations of room type-wall color and observe the classifier’s predictions on held-out

combinations. We find that the predictions are heavily biased towards wall color.

Evidently, wall color serves as an unintended shortcut predictor for room type.

Finally, we aim to increase domain generalization. Domain randomization meth-

ods e.g., randomizing textures, colors and shapes of objects or environments are

commonly used to transfer policies in DRL [8–10]. However, these methods specifi-

cally require changes to the simulator, which might be inflexible or difficult to mod-

ify e.g., high-fidelity simulators with training data reconstructed from real-world

3D scans [11, 12]. While more sophisticated methods for partially editing individ-

ual frames during training exist (e.g., text-to-image models [13,14]), they are slow,

computationally expensive and error-prone. Instead, we take a different approach

and propose Language-Based (L-B) augmentation (see Fig. 1). We augment directly

at feature-level, without editing individual frames or any changes to the simulator.

We build upon promising results from [1], where visual representations within

the agent’s architecture are based on a Vision-Language Model (VLM). RGB obser-

vations are encoded using a Contrastive Language Image Pretraining (CLIP) [15]

February 28, 2024 10:58 WSPC/INSTRUCTION FILE output

4 Dennis Hoftijzer, Gertjan Burghouts, Luuk Spreeuwers

visual backbone. CLIP jointly trains an image and text encoder, such that both pro-

duce similar representations for visual concepts in images or their names in natural

language. Our key insight is that we can augment agent’s visual representations at

feature-level, by describing variations of the dataset bias in natural language. By an

elegant modification to the SOTA architecture [1], with only one additional layer,

we generalize better to environments with different wall colors in ObjectNav.

2. Related work

2.1. Vision-Language for visual navigation

Several recent works have proposed utilizing pre-trained features of Vision-Language

Models (VLMs), pre-trained on internet-scale data, for several visual navigation

tasks [1, 16–19]. In [1], authors explore the effectiveness of learning a navigation

policy based on CLIP embeddings [15]. With their method, EmbCLIP [1], they

show that CLIP’s visual representations encode useful navigation primitives such

as reachability and object localization. They set new SOTA results on several visual

navigation tasks, including ObjectNav, and show promising results for generalizing

to an open-world setting i.e., navigating to target objects not seen during training.

Moreover, as generating the robot trajectories and paired language annotations in

the real world might be costly, further works have proposed utilizing VLMs out-

of-the-box with maps to enable zero-shot navigation i.e., without supervision of

DRL reward signals or human demonstrations [16–18]. We adopt the architecture

of EmbCLIP as a baseline, given its strong performance on a variety of settings.

However, our focus is specifically on addressing shortcut bias in E-AI simulators,

which might impede generalization of DRL methods to novel environments.

2.2. Embodied AI simulators and scene datasets

Many Embodied-AI simulators [3–6] have been developed, along with several (near)

photo-realistic 3D indoor scene datasets [10–12, 20]. Scenes can be either recon-

structed from 3D scans of real-world houses e.g., Matterport [11], or synthetically

composed from artist created 3D assets e.g., AI2-THOR [3] (The House Of inteR-

actions) and variants (RoboTHOR [5], ManipulaTHOR [21]). Both methods are

extremely costly to collect. Reconstructing scenes from 3D scans involves stitching

images from specialized cameras whilst manually composing synthetic scenes in-

volves carefully configuring lighting, object placement and textures. ProcTHOR [10]

recognizes this fact and instead uses a procedural generation process to generate

10,000 scenes (dubbed ProcTHOR-10k). In this work, we leverage the ProcTHOR-

10k scene dataset. Due to the procedural generation process, we can fully customize

these scenes by altering the appearance of individual objects and room surfaces

(walls, floors and ceilings). For instance, a red sofa can be replaced with a black

one. This customization and our proposed interventions on ProcTHOR-10k, allow

for inserting a shortcut bias in the appearance of training scenes and evaluate o.o.d.

generalization.

February 28, 2024 10:58 WSPC/INSTRUCTION FILE output

Language-Based Augmentation to Mitigate Shortcut Learning in ObjectNav. 5

Although ProcTHOR enables E-AI to scale, this does not imply shortcut bi-

ases completely disappear. Recent works show that even Large-Language Models

(LLMs), pre-trained on text amounting to billions of words, suffer from shortcut

learning, largely due to collection artifacts in training data [7,22]. Moreover, short-

cut bias might be difficult to observe for humans e.g., superficial statistics in training

data such as textures of specific frequencies in image classification tasks [23]. Conse-

quently, in E-AI simulators, shortcut bias might arise inadvertently. For instance, as

ProcTHOR is generated procedurally, some smaller objects (e.g. a pen) are always

placed on larger objects (e.g. a desk in the bedroom). An agent might learn a bias

for navigating to a target object only when it is placed on this larger object and not

when the object is placed independently (e.g. on the floor in the living room). We

employ a simple wall color bias as a proof-of-concept for such unintended shortcut

biases.

2.3. Shortcut learning

Shortcut learning is emerging as a key impediment in the generalization ability

of deep neural networks (DNNs) [7]. Shortcuts are decision rules, often learned

by DNNs, which aid performance on a particular dataset but do not match with

human-intended ones. Accordingly, they typically fail when tested in only slightly

different conditions. Prior work in shortcut learning is predominantly concerned

with supervised learning [23–25]. Similar to our work, [24] designs an experimental

setup to observe whether DNNs prefer to adopt color, shape or size shortcuts, and

find DNNs naturally prefer certain shortcuts. In contrast, we study the shortcut

learning phenomenon in the context of DRL.

A common implication of shortcut learning in DRL is observed when transfer-

ring policies from simulation to the real-world [7, 8, 26]. Most policies trained in

simulation generalize poorly to the real-world due to agents adapting to specific

visual details of the simulator. Prior works cope with this so-called ‘reality gap’

by domain randomization methods i.e., randomizing appearances in training en-

vironments [8, 9]. Similarly, ProcTHOR [10] allows for randomizing e.g., textures

and colors of walls, ceilings, floors and objects. While ProcTHOR shows incredibly

powerful results, such augmentations might not be available for all simulators, and

more often than not, difficult to apply post-hoc. Contrary, our method can readily

be applied post-hoc as it requires no changes to training data or the simulator. We

propose augmentations where we use targeted randomization of specific unintended

biases, in our case, wall color. Although a simple wall color bias might be addressed

using conventional domain randomization, these methods are inconvenient consid-

ering more intricate biases (e.g., a pen is always on a desk). In contrast, our method

utilizes free-form natural language, which allows for easily adapting to different bi-

ases. Vision-Language Models (VLMs) e.g., CLIP [15], allows us to augment at

feature-level based on prior knowledge of the environment without any changes to

training data.

February 28, 2024 10:58 WSPC/INSTRUCTION FILE output

6 Dennis Hoftijzer, Gertjan Burghouts, Luuk Spreeuwers

3. ObjectNav preliminaries

3.1. ObjectNav definition

In ObjectNav [2], agents are initialized at a random pose in an unseen environment

and given a label specifying the target object category (e.g. ‘Bed’). The goal for the

agent is to navigate to an instance of the target object within a certain time budget

(T = 500). At each time step t, the agent receives an image from an RGB forward-

facing camera and can take one of 6 possible actions: move ahead, rotate left, rotate

right, look up, look down and done. We do not utilize any depth sensor readings.

Also, we simulate actuation noise to better resemble actuation in the real-world. A

full description of the discrete action space is shown in Table 4 (Appendix).

3.2. Evaluation metrics

Following standard ObjectNav procedure [2], an episode is considered successful

if (1) the agent executes the special done action; (2) The target object is within a

certain distance threshold, typically dt = 1m; and (3) the target object is considered

visible i.e., within the camera’s field of view and not fully obstructed.

We report two primary performance metrics: Success and Success weighted by

(normalized inverse) Path Length (SPL). Success is the average success rate over

all N evaluation episodes and SPL is a measure for path efficiency [2]:

SPL =
1

N

N∑
i=1

Si
li

max(pi, li)
(1)

Si is a binary indicator denoting success of episode i; li is the shortest path

length from starting position to the target object and pi is the length of the path

the agent travelled. SPL is bounded by [0, 1], where 1 is optimal performance i.e.,

the agent took the shortest path possible in all N evaluation episodes. Note that,

SPL is a stringent measure. Achieving an SPL of 1 is infeasible (even for humans),

without knowing the target object location a priori. Additionally, we report two

more evaluation metrics: Distance To Target (DTT) and the episode length. DTT

is the remaining shortest path length to visibly see the target object.

3.3. ProcTHOR

ProcTHOR enables E-AI to scale by procedurally generating simulated environ-

ments. Given a room specification (e.g. a house with 1 bedroom and 1 bathroom),

ProcTHOR can produce a large variety of floor plans, populates each floor plan

by sampling from a library of 3D assets, and supports randomization of lighting,

colors and textures. In this work, we leverage ProcTHOR-10k, as these scenes can

be fully customized. This customization and our proposed interventions, allow for

inserting a shortcut bias in the appearance of training environments and evaluate

o.o.d. generalization.

February 28, 2024 10:58 WSPC/INSTRUCTION FILE output

Language-Based Augmentation to Mitigate Shortcut Learning in ObjectNav. 7

4. O.o.d. test: interventions on ProcTHOR-10k

4.1. Interventions on ProcTHOR-10k

In order to evaluate o.o.d. generalization, we need to guarantee only to measure

performance degradation due to changing wall colors, without other aspects (object

appearances, scene layout, etc.) influencing our evaluation. Therefore, we propose

some interventions on ProcTHOR-10k. First, we start by selecting a more uniform

subset of scenes and targets. We select only houses with 3 rooms, which all consist

of 3 room types: kitchen, bedroom and living room. For each room type, we select

3 target object categories (9 total) which are semantically related (e.g. fridge in

kitchen). Section Appendix A (Appendix) shows an overview of all target objects

selected. Next, we restrict ourselves to scenes which contain exactly one instance of

each target object category in the associated target room e.g., every house contains

1 bed, positioned in the bedroom. We ensure this restriction by (1) selecting scenes

which contain at least one instance of each target object in the associated room

type and (2) manually removing any double (or more) instances of target objects.

Secondly, we set identical appearances for all object categories (including doors) e.g.,

all chairs appear exactly alike, and identical appearances of room surfaces for each

room type e.g., all kitchens have identically colored walls, floors and ceilings. We set

object appearances identical by assigning one 3D asset from the ProcTHOR library

to each object type. We set all room surfaces identical by setting the same materials

from the ProcTHOR library. Lastly, we remove windows and wall decoration. These

interventions limit the house variations to just wall colors, which is the only aspect

influencing the performance.

Train

set
Specific wall color for each room type

Test set

0-room

No wall color change

Target room = Kitchen

Test set

1-room

1 wall color change

Test set

2-room

2 wall color changes

Target room

Test set

3-room

3 wall color changes

 Identical visual appearance

 Change

 Target

 room

 Change

 Non-target

 room

 Change

 Non-target

 room

 Disjoint

 set of

 scenes

Deceptive!

Fig. 2: Setup for our o.o.d. generalization test. In this example, the target

room is the kitchen (red walls in test set 0-room). We change the target room

first (test set 1-room) and incrementally change more rooms (test set 2/3-room).

The bottom row shows two examples of deceptive changes, where the wall color

associated with the target room (red wall color) is moved to a different room type.

The top row only shows nondeceptive changes.

February 28, 2024 10:58 WSPC/INSTRUCTION FILE output

8 Dennis Hoftijzer, Gertjan Burghouts, Luuk Spreeuwers

4.2. Evaluating o.o.d. generalization

We aim to assess the agent’s generalization across increasing numbers of changing

wall colors (illustrated in Fig. 2). The training set consists of visually identical

houses, where living rooms have blue walls, kitchens have red walls and bedrooms

have green walls. For our test sets, we use houses with a different layout such that

agents cannot simply memorize object locations, and permute wall colors. The 0-

room test set serves as a reference. To solely evaluate generalization to different

wall colors, we use the same layouts in each test set and compare performance to

the reference 0-room test set. First, we change the wall color of the target object’s

room as this is the simplest deviation (1 wall color change). For instance, if the

target object is a fridge, we start by altering the wall color of the kitchen from red

to e.g., green, whereas if the target object is a bed, we start with changing the wall

color of the bedroom from green to e.g., blue. Next, we change another room’s wall

color (2 wall color changes). Finally, we change the wall colors of all three rooms

(3 wall color changes). We change to all possible permutations (e.g. red kitchen to

blue and green wall colors in test set 1-room) with repetition i.e., multiple room

types can have the same wall color.

We differentiate wall color changes of non-target rooms (test set 2- and 3-room)

into two types: deceptive vs nondeceptive. We expect that moving the learned color

i.e, the wall color associated with the target room, to a non-target room will have

a high impact, because the agent may look in the latter, wrong room. We refer

to this wall color change as ‘deceptive’. Examples of deceptive changes are shown

in the bottom row (test set 2- and 3-room). Instead, when none of the rooms has

the learned color, we expect less performance degradation, because the agent is not

misled. We refer to such a wall color change as ‘nondeceptive’ (top row).

5. Method: Language-based Augmentation

We increase domain generalization by augmenting the agent’s visual representations

at feature-level, such that these are more invariant to changing environments. We

implement this by adding one layer on top of EmbCLIP [1]. In EmbCLIP, the agent’s

visual representations are based on a VLM (CLIP). We leverage the vision-language

representations for feature-level augmentations, without the need to modify the

simulator. Our augmentations are based on textual descriptions of variations of the

dataset bias that we want the agent to learn and generalize. We call this Language-

Based (L-B) augmentation (Fig. 3). In EmbCLIP, at each time step t, a visual

representation or image embedding ItItIt is obtained by encoding RGB observations

using CLIP’s [15] visual encoder (CLIPv). CLIP learns to associate text strings with

their visual concepts in images. Our key insight is that we can represent domain

specific knowledge, regarding the changes in environment appearances, using natural

language. By encoding text descriptions of variations of the dataset bias (e.g. ‘a blue

wall’), using CLIP’s text encoder (CLIPT), we vary visual representations without

actually having seen images containing these variations (e.g. an image of a blue

February 28, 2024 10:58 WSPC/INSTRUCTION FILE output

Language-Based Augmentation to Mitigate Shortcut Learning in ObjectNav. 9

wall). This allows us to augment directly at feature-level. For encoding the text

descriptions we use the default prompt template recommended by [15]: ‘a photo of

a {label}’. We insert descriptions of variations of the dataset bias (e.g. ‘red wall’).

We obtain our augmented embeddings ILB
tI
LB
tI
LB
t by computing differences between n

encoded text descriptions of variations of the dataset bias T1,...,nT1,...,nT1,...,n, and adding to

visual representation ItItIt:

ILB
tI
LB
tI
LB
t = ItItIt + α ·∆(TTT), (2)

∆(TTT) =

∆1∆1∆1

∆2∆2∆2

...

∆n(n−1)∆n(n−1)∆n(n−1)

 =

T1T1T1 − T2T2T2

T1T1T1 − T3T3T3

...

TnTnTn − T1T1T1

 (3)

where, α controls the degree of augmentation and ∆ computes differences of

all permutations of length 2 of text descriptions TTT . By randomly sampling an aug-

mented embedding from ILB
tI
LB
tI
LB
t at each time step, we aim to provide the RL model

(RNN) with an embedding which resembles the same room type (e.g., a living room

in Fig. 3), but with a different wall color (e.g., red and blue instead of green in

Fig. 3). We empirically find α = 50 to work well by tuning for our specific dataset

and shortcut bias. We standardize features before feeding into the RNN to ensure

Living room with
green walls

Living room with
blue walls

Living room with
red walls

Describe n variations
of dataset bias

Language-based augmentation

Random sampling
RGB

observation

Image embedding

It

Text embeddings

It+Δ1

It+Δ2

...

It+Δn(n-1)

Resembles

Resembles

Testing
environments

T1-T2

T1-T3

...
Tn – T1

...

T1-T2T1-T2

T1-T3T1-T3

...
Tn – T1Tn – T1

......

...

T1

T2

...
Tn

T1T1

T2T2

......
TnTn

ΔΔ

via Vision-Language Space

++

αα

Fig. 3: Language-Based (L-B) augmentation via a the feature space of

a vision-language space. Our key insight is that we can augment agent’s visual

representations (It) using differences (∆) between encoded text descriptions of vari-

ations of the dataset bias (T1,...,n). The augmented embedding of an image ‘A living

room with green walls’ resembles a ‘living room with red or blue walls’. The RL

model (RNN) is not able to use a shortcut strategy even if during training living

rooms always have green walls.

February 28, 2024 10:58 WSPC/INSTRUCTION FILE output

10 Dennis Hoftijzer, Gertjan Burghouts, Luuk Spreeuwers

stability during training (as some features might dominate the loss due to large

norms). In our case, we insert three (n = 3) text descriptions of variations of the

dataset bias: ‘blue wall’, ‘red wall’ and ‘green wall’. This results in 6 augmented

embeddings ItItIt +∆n(n−1)∆n(n−1)∆n(n−1) per image embedding ItItIt.

6. Experiments

We perform four experiments, where we aim to: (1) evaluate generalization of Em-

bCLIP [1] to scenes where we change wall colors and study to what extend short-

cuts influence the generalization ability; (2) bring more insight into why the agent

learns shortcuts by analysing visual representations within EmbCLIP; (3) demon-

strate, using an identical o.o.d. analysis, that our L-B augmented representations

mitigate the effects of shortcut bias and finally; (4) validate L-B augmentation can

increase domain generalization in ObjectNav by integrating within the architecture

of EmbCLIP.

6.1. Experimental setup

6.1.1. ObjectNav dataset details

We train agents on 20 visually identical but biased scenes, generated using our

proposed interventions (Section 4). During training, we randomly sample 1 of 9

target objects. We analyze o.o.d. performance on a set of 5 disjoint scene layouts.

We run 1080 evaluation episodes per test set to evenly distribute episodes over the

5 layouts, possible wall color permutations and target objects. Section Appendix B

(Appendix) details the distribution.

6.1.2. Agent architecture and configuration

We use the ObjectNav EmbCLIP architecture [1], which has two different vari-

ations: a closed-world architecture, which assumes known target objects, and an

open-world variant. Both encode RGB egocentric views using a frozen CLIP image

encoder with a ResNet-50 backbone. However, the closed-world variant obtains a

goal-conditioned embedding before feeding into an RNN, which involves removing

the final layers from CLIP, whereas the open-world variant feeds the image embed-

ding directly. For our o.o.d. generalization test, we adopt EmbCLIP’s closed-world

architecture given its better performance in a closed-world setting. We integrate our

L-B augmentations in the open-world variant, as this architecture feeds the CLIP

image embedding directly into an RNN, which allows for substituting this image

embedding with a L-B augmented embedding, using random sampling.

Following typical ObjectNav setup [1, 10], the embodied agent approximately

matches a LoCoBot with a 90◦ horizontal camera field of view, a 0.25m step size

and a 30◦ turn angle.

February 28, 2024 10:58 WSPC/INSTRUCTION FILE output

Language-Based Augmentation to Mitigate Shortcut Learning in ObjectNav. 11

6.1.3. Reward setting

At each time step t, the reward rt is:

rt = max(0,min∆0:t−1 −∆t) + rslack + rsucc (4)

where, min∆0:t−1 is the minimal path length from the agent to the target object

that the agent has previously observed during the episode in {0, ..., t− 1}, ∆t is the

current path length from the agent to the target, rslack = −0.01 is the slack penalty,

and rsucc = 10 is a large reward if the episode is considered successful, otherwise

rsucc = 0. The reward is shaped to optimize path efficiency and, therefore, SPL.

6.1.4. Implementation details

We use the Allenact framework [27] and render frames at 224× 224 resolution. To

parallelize training, we use DD-PPO [28] with 40 environment instances. After each

rollout, the model is updated using 4 epochs of PPO [29] in a single global batch size

of 7680 frames. We perform validation every 200,000 frames and report results of

the checkpoint with highest SPL. Additional hyperparemeters are shown in Section

Appendix C (Appendix).

6.2. Impact of Shortcut Learning

How well does a SOTA ObjectNav method generalize to scenes with different wall

colors and to what extent do shortcuts affect the o.o.d. generalization ability? We

hypothesise the performance drop coheres with the number of wall color changes.

Moreover, we posit a deceptive change will lead to more performance degradation

than a nondeceptive change as the agent will be misled to search for the target

object in the wrong room. Fig. 4 shows the performance. We report the mean over

all episodes, the mean over episodes with deceptive changes and the mean over

episodes with nondeceptive changes. We observe that changing the wall colors of

only the target room already leads to a large decrease in performance. On average

(blue mean bar), we observe a 67% relative drop in SPL (0.39 → 0.13) and 56% in

success rate (68% → 30%) going from 0 wall color changes to 1 wall color change,

with even lower mean performance for more wall color changes. Indeed, we find that

EmbCLIP generalizes poorly to scenes with different wall colors when using limited

training data. Regarding deceptive vs nondeceptive changes, the Success, SPL and

DTT metrics indicate that deceptive changes indeed deteriorate performance most,

even more than multiple nondeceptive changes. Interestingly, however, we observe

shorter episode lengths for deceptive changes. We conjecture that due to deceptive

changes, the agent directly navigates towards the learned color of the target room,

which is now placed in a non-target room, without exploring any other rooms. The

agent will erroneously search this non-target room, but can not find the target

object, and terminates the episode. In contrast, an agent will explore the entire

scene when wall colors have only been changed nondeceptively, leading to longer

February 28, 2024 10:58 WSPC/INSTRUCTION FILE output

12 Dennis Hoftijzer, Gertjan Burghouts, Luuk Spreeuwers

Fig. 4: Degradation for o.o.d. cases. Performance of EmbCLIP [1] to scenes

with different wall colors. When only changing the wall color of the target object’s

room (1 wall color change), we already observe a large decrease in performance in

all metrics.

episodes. We show a qualitative example of this behaviour in Fig. 5, where the

agent has learned to look for a room with green walls instead of a bedroom. The

agent is deceived by the green living room, and terminates the episode when it sees

the sofa. This leads to a much shorter episode than in the nondeceptive example,

where the agent explores large parts of the scene. Evidently, the agent has learned

a shortcut strategy, it navigates towards a particular wall color instead of the right

target room.

6.3. Analysis of agent’s visual representations

Why does the agent learn such a shortcut strategy in ObjectNav? We aim to un-

derstand if we can trace this issue back to the agent’s visual encoder (CLIPv).

Specifically, we posit wall color serves as an unintended shortcut predictor for room

type in the agent’s visual representations. To this end, we train a simple neural clas-

sifier, using supervised learning, to predict room type based on CLIP embeddings

extracted from sampled RGB observations. We evaluate if the classifier adopts wall

color as a shortcut predictor by observing its predictions on held-out room type-wall

color combinations.

To enable the above evaluation, we render a small dataset of sampled frames.

Specifically, we select 1 house layout, randomly position an agent in a certain room,

February 28, 2024 10:58 WSPC/INSTRUCTION FILE output

Language-Based Augmentation to Mitigate Shortcut Learning in ObjectNav. 13

Instruction: “Find a bed”

Deceptive

No wall color change

Starting point A Starting point B

Nondeceptive

Fig. 5: Errors and shortcuts by the SOTA ObjectNav method. We show

example trajectories from 2 different starting position (left vs right column). No-

tice how nondeceptive episodes (middle) are much longer than deceptive episodes

(bottom), whilst both are unsuccessful. Also note the absolute lack of search in the

bedroom when changing wall colors deceptively.

and sample its RGB obervation. We sample 200 observations from each room type

to form our training set. Ground truth data is determined by the agent’s location.

Next, to form our test set, we permute wall colors and sample 200 more frames

for every held-out combination of room type–wall color. For each frame in our

dataset, we extract CLIP embeddings using CLIP’s visual encoder. We train a

multi-layer perceptron (MLP) to predict room type solely from these embeddings.

Furthermore, we split our test set into two types: ‘context’ vs ‘contextless’. We

refer to ‘context’ frames as frames which contain objects, which provide semantic

information (or ‘context’) pertaining to room type (e.g. a sofa in the living room).

Instead, ‘contextless’ frames do not contain any useful information (i.e. only walls,

floors and ceilings). We create this split as we expect the predictions to be worse on

contextless frames as the classifier can only use the biased wall color to classify room

type. See Appendix (Section Appendix D) for more details on the frame sampling

and classifier training.

February 28, 2024 10:58 WSPC/INSTRUCTION FILE output

14 Dennis Hoftijzer, Gertjan Burghouts, Luuk Spreeuwers

Bedroom
Kitchen

LivingRoom

Kitchen

LivingRoom

.942 .058 .0

.856 .0 .144

Bedroom

LivingRoom

.146 .854 .0

.0 .615 .385

Kitchen

Bedroom

.0 .302 .698

.062 .012 .926
0.0

0.2

0.4

0.6

0.8

1.0

Predicted label

Tr
ue

 la
be

l

(a) Context

Bedroom
Kitchen

LivingRoom

Kitchen

LivingRoom

1.0 .0 .0

1.0 .0 .0

Bedroom

LivingRoom

.0 1.0 .0

.0 1.0 .0

Kitchen

Bedroom

.0 .0 1.0

.0 .0 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Predicted label

Tr
ue

 la
be

l

(b) Contextless

Fig. 6: Room type confusion CLIP visual representations. Confusion ma-

trices for a classifier trained on CLIP embeddings extracted from wall color biased

frames. True label colors indicate the wall color in our test set. Predicted label col-

ors indicate the room type–wall color combinations during training.

Fig. 6 shows confusion matrices for (a) context and (b) contextless frames. Fig.

6a shows that e.g., 94.2% of frames showing a kitchen with green walls, are classified

as a bedroom since the classifier has only seen bedrooms with green walls during

training. The majority of context frames are being classified directly according to

their wall color, leading to classification accuracy of 16.8%, worse than random. In

the contextless set (Fig. 6b), we see all rooms being classified according to their

wall color leading to an overall classification accuracy of 0%. Clearly, we observe a

large confusion of room types, which is caused by the biased wall color.

6.4. Analysis of L-B augmented representations

In the previous experiment we observed that CLIP visual representations encode

shortcuts where wall color serves as an unintended shortcut predictor for room type.

We posit that improved room type classification leads to more capable ObjectNav

agents in our o.o.d. generalization test. Therefore, in the following experiment, we

investigate the impact of augmenting CLIP visual representations, using our L-B

augmentation (Section 5), on room type classification accuracy.

Although an agent cannot base its room type predictions on wall color, it can

base its predictions on object-room relations. Therefore, using L-B augmentation,

we aim to improve classification accuracy on context frames, whereas, when no

context is provided, the agent should not recognize the room type. Hence, we aim to

February 28, 2024 10:58 WSPC/INSTRUCTION FILE output

Language-Based Augmentation to Mitigate Shortcut Learning in ObjectNav. 15

achieve unbiased confusion on contextless frames i.e., a confusion matrix CCC where

each element Ci,j = 0.33 (for nclasses = 3). To measure unbiased confusion, we

define the Absolute Difference With Random (ADWR):

ADWR =
1

N

∑
i,j

|Ci,j −
1

nclasses
| (5)

where, N = 18 is the number of elements in the confusion matrix CCC. Ideally,

ADWR = 0, where the classifier predicts each room type with equal probability.

Contrary, when predictions are completely biased i.e., predicting all test samples

according to the learned wall color, ADWR = 0.44. Note that ADWR ∈ [0, 0.44].

We use an identical experiment setup as in the previous experiment (Section 6.3).

However, now we first augment the CLIP embeddings extracted from the frames in

our training set according to Eq. 2 and 3. As this results in six times as many L-B

representations, we randomly sample a single L-B representation per frame for our

new train set. We test on the original CLIP embeddings in our test set, where again

we split in context and contextless frames, and report confusion matrices.

Fig. 7a shows improved room type classification on context frames using our L-

B augmentations. Although the bias is still significantly influencing the room type

prediction, we see, for instance, 23.1% of green kitchen frames now being classified

as their true type, opposed to only 5.8% in Fig. 6a. Surprisingly, in Fig. 7b, we see

Bedroom
Kitchen

LivingRoom

Kitchen

LivingRoom

.769 .231 .0

.467 .0 .533

Bedroom

LivingRoom

.458 .417 .125

.026 .103 .872

Kitchen

Bedroom

.032 .651 .317

.346 .086 .568
0.0

0.2

0.4

0.6

0.8

1.0

Predicted label

Tr
ue
 la
be
l

(a) Context

Bedroom
Kitchen

LivingRoom

Kitchen

LivingRoom

.704 .296 .0

.688 .312 .0

Bedroom

LivingRoom

.0 1.0 .0

.0 1.0 .0

Kitchen

Bedroom

.0 .962 .038

.0 .958 .042
0.0

0.2

0.4

0.6

0.8

1.0

Predicted label

Tr
ue
 la
be
l

(b) Contextless

Fig. 7: Room type confusion after L-B augmentations. Classifier trained on

L-B augmented representations. Label color indicates wall color, where the predicted

label colors indicate the wall colors the classifier was trained on.

February 28, 2024 10:58 WSPC/INSTRUCTION FILE output

16 Dennis Hoftijzer, Gertjan Burghouts, Luuk Spreeuwers

Table 1: Original CLIP visual representation vs after Language-Based

augmentations. We report accuracy on the context frames and ADWR (see text)

on the contextless frames.

Accuracy (↑)
(Context)

ADWR (↓)
(Contextless)

Original CLIP 0.17 0.44

Language-based augmentation (ours) 0.500.500.50 0.37

a shift towards predicting contextless frames as a kitchen type instead of unbiased

confusion. We posit this is due to optimizing classification accuracy during training

using log-loss, which indicates how far predictions are from ground truth. There is

no incentive to classify rooms randomly, with a low probability, over classifying all

test samples as a single class. Both result in low classification accuracy. Hence, there

seems to be a mismatch between the optimization and what we aim to achieve.

In Table 1, we compare results between a classifier trained on the original CLIP

embeddings vs after L-B augmentions. Using our method, we observe significantly

increased classification accuracy on context frames (17% → 50%), as desired. Fur-

thermore, we see decreased ADWR on contextless frames (0.44 → 0.37), as desired.

Overall, using L-B augmentation we are able to suppress the use of wall color serving

as a shortcut predictor for room type classification.

6.5. Benefit of Proposed L-B Augmentations for navigation

Do our L-B augmentations make the agent’s model more robust to shortcuts, i.e.,

more domain invariant against biased wall color and room type? Finally, we inte-

grate our L-B augmentation method within the EmbCLIP architecture as a single

extra layer, as detailed in Section 5. Note that training time is only marginally

longer: from 88 to 90 GPU-hours (both 30M steps). Fig. 8 shows a comparison

of EmbCLIP with and without our L-B augmentations. EmbCLIP’s performance

already degrades significantly after changing wall colors of the target room (1 wall

color change). We observe 69% relative drop in success (45% → 14%) and 82%

drop in SPL (0.22 → 0.04). In contrast, our method shows improved domain gener-

alization. When changing wall colors of the target room (1 wall color change), our

method incurs only a 23% relative drop in success (39% → 30%) and 29% drop in

SPL (0.17 → 0.12). We observe less performance degradation with an increasing

number of wall color changes than EmbCLIP. In the qualitative example of Fig. 1,

the agent is now able to find the sofa even though it is not in a living room with

blue walls (training). The agent finds the sofa successfully in a living room with

green walls (not seen during training). These results demonstrate that our L-B aug-

mentations are an interesting direction to make RL agents more robust to biases,

by only adding one additional layer to the agent’s model.

February 28, 2024 10:58 WSPC/INSTRUCTION FILE output

Language-Based Augmentation to Mitigate Shortcut Learning in ObjectNav. 17

Fig. 8: Extending EmbCLIP [1] with our L-B augmentations. Performance

on o.o.d. cases for EmbCLIP [1] vs EmbCLIP with L-B augmentations. Using our

L-B augmentations, EmbCLIP generalizes better to scenes with different wall colors.

7. Conclusion and limitations

We evaluated how well a SOTA method for ObjectNav generalizes to scenes with

different wall colors, and studied to what extent shortcut learning influences this

o.o.d. generalization. We found that, when deliberately limiting training data, only

changing wall colors in testing scenes decreases performance significantly, with the

root cause being the deceptive wall color changes. We proposed Language-Based

(L-B) augmentation to mitigate shortcut learning. By encoding text descriptions of

variations of the dataset bias, and leveraging the multimodal embedding space of

CLIP, we were able to augment agent’s visual representations directly at feature-

level. Finally, experiments showed that our L-B augmentation method is able to

improve domain generalization to scenes with different wall colors in ObjectNav.

When changing the target object’s room, our method incurs a 23% relative drop in

success rate whilst the SOTA ObjectNav method’s success rate drops 69%.

To demonstrate the usefulness of our approach, we considered a simple case

of shortcut bias e.g., wall color. Although our agents showed improved domain

generalization, such simple cases may well be accommodated using conventional

domain randomization methods in simulators which are easily modifiable. In future

work, we hope to explore how to use natural language for augmentations addressing

February 28, 2024 10:58 WSPC/INSTRUCTION FILE output

18 Dennis Hoftijzer, Gertjan Burghouts, Luuk Spreeuwers

more intricate biases. For instance, bias at the object-level. Some objects might

usually occur in combination with other objects (e.g., pillow on a bed). Agents could

learn a bias for navigating towards the bedroom instead of also exploring the living

room (e.g., pillow on a sofa). Moreover, as efficient ObjectNav requires agents to

leverage useful semantic priors about the environment (e.g., object-room relations),

it would be interesting to see how to use natural language to guide the exploration

of agents in more unusual situations, where such priors are disadvantageous (e.g.

pillow in the kitchen).

Appendix A. Target object selection

We select 3 target objects per room type, based on the object’s occurrence frequency

in ProcTHOR-10k and if they have a clear semantic relation with one of the room

types. We select different sized objects for each room type (see Table 2).

Appendix B. Distribution evaluation episodes

We evenly distribute 1080 evaluation episodes over 9 target objects, 5 scene layouts

and possible wall color permutations for each test set. As there are more possible

permutations for increasing number of wall color changes, the number of episodes

per unique scene (combination of layout and wall color permutation) decreases. For

example, for the 0-room test set, only 5 unique scenes are possible as only 1 wall

color permutation is possible (no wall color changes w.r.t. training set). Hence, we

run 216 episodes per unique scene. For the 1-room test set, we change the target

room to 2 different wall colors e.g., bedroom from green (train) to blue or red. In

this case, we distribute the 1080 episodes over 10 unique scenes (5 layouts and 2

wall color permutations). We do the same for the 2-room and 3-room test set. Next,

we evenly distribute over the 9 target objects. For instance, for the 0-room test set,

we distribute the 216 episodes over 9 target objects (24 per target object).

Table 2: Target objects selected for each room type.

Room type Target object category

Kitchen

Fridge

Kettle

Apple

Living room

Sofa

Television

Newspaper

Bedroom

Bed

Dresser

Alarm clock

February 28, 2024 10:58 WSPC/INSTRUCTION FILE output

Language-Based Augmentation to Mitigate Shortcut Learning in ObjectNav. 19

Appendix C. Additional training details ObjectNav

Table 3 details the hyperparameters we set for all of our training runs. We use

DD-PPO [28] and Generalized Advantage Estimation (GAE) [29], parameterized

by λ = 0.95.

Appendix D. Visual representations analysis details

D.1. Dataset of sampled observations

For our o.o.d. analysis of agent’s visual representations, we generate a small dataset

of sampled frames (RGB observations). For this dataset, we sample 200 frames for

every room type-wall color combination (3 room types, 3 wall colors) by initializing

agents with a random pose in a certain room and sampling its RGB frame. Ground

truth data for room type is determined by the agent’s position. For instance, if the

agent is positioned in the kitchen, the frame encodes a kitchen room type. To ensure

the agent is not initialized in e.g., the kitchen but looking towards the bedroom, we

limit the possible orientations the agent is initialized at. We limit the orientations

such that the agent is not looking into other rooms than the one it is positioned in.

This results in 9 sets of frames (200 each), each belonging to a certain room type

and wall color combination (e.g. kitchen with red walls). The training set consists

of frames showing a bedroom with green walls, a kitchen with red walls and a living

room with blue walls. We test on the held-out combinations of room type and wall

color, which we split into ‘context’ vs ‘contextless’.

Table 3: Training hyperparameters.

Hyperparameter Value

No. of GPUs 2

No. environments per GPU 20

Rollout length 192

No. mini-batches per rollout 1

PPO epochs 4

Discount factor (γ) 0.99

GAE [29] parameter (λ) 0.95

Value loss coefficient 0.5

Entropy loss coefficient 0.01

PPO clip parameter (ϵ) 0.1

Gradient clip norm 0.5

Optimizer Adam

Learning rate 3e-4

February 28, 2024 10:58 WSPC/INSTRUCTION FILE output

20 Dennis Hoftijzer, Gertjan Burghouts, Luuk Spreeuwers

D.2. Splitting into context/contextless

This section describes how we split the test set of held-out frames into ‘context’

vs ‘contextless’. First, we cherry pick 6 sampled frames, which we define as ground

truth context or contextless. We pick one for each wall color. Next, we extract

the 1024-dimensional CLIP embeddings for all frames in our dataset. To form our

split, we select the 150 most similar frames to each of the 3 contextless ground truth

samples, and 200 most similar frames to each of the 3 context ground truth samples.

The similarity is based on cosine score of their encoded CLIP representations. We

use the CLIP visual encoder, employing a ResNet-50 backbone.

D.3. Classifier training details

For each frame in our dataset, we extract the 1024-dimensional CLIP embeddings

using the CLIP visual encoder employing a ResNet-50 backbone. We train a multi-

layer perceptron (MLP) to predict room type from these embeddings. We use a

MLP with 1 hidden layer (100 neurons wide), ReLu activation, a batch size of 200,

a learning rate of 0.0001, an adam optimizer and supervise using the generated

ground truth data. Lastly, we standardize individual features using mean removal

and scaling to unit variance before training the MLP.

For our analysis of L-B augmented representations (Section 6.4) we first augment

the 600 original CLIP embeddings from our train set as detailed in Section 5. This

results in 3600 augmented embeddings (6 for each original embedding). For each

original embedding, we randomly sample 1 augmented embedding to obtain 600

augmented embeddings for our new train set.

Appendix E. Action space description

Table 4: Action space description. We use a 6-action discrete action space.

Action Description

MOVEAHEAD
Moves the agent forward (if possible) by sampling

from N (µ = 0.25m,σ = 0.005m).

ROTATELEFT

ROTATERIGHT

Rotates the agent left or right by sampling from

N (µ = 30◦, σ = 0.5◦)

LOOKUP

LOOKDOWN

Tilt the camera of the agent upward or

downward by 30◦

DONE Special action of the agent to terminate the episode.

February 28, 2024 10:58 WSPC/INSTRUCTION FILE output

Language-Based Augmentation to Mitigate Shortcut Learning in ObjectNav. 21

References

[1] A. Khandelwal, L. Weihs, R. Mottaghi and A. Kembhavi, Simple but effective: Clip
embeddings for embodied ai, in 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (IEEE Computer Society, Los Alamitos, CA, USA,
jun 2022), pp. 14809–14818.

[2] D. Batra, A. Gokaslan, A. Kembhavi, O. Maksymets, R. Mottaghi, M. Savva, A. To-
shev and E. Wijmans, Objectnav revisited: On evaluation of embodied agents navi-
gating to objects, CoRR abs/2006.13171 (2020).

[3] E. Kolve, R. Mottaghi, D. Gordon, Y. Zhu, A. Gupta and A. Farhadi, AI2-THOR:
an interactive 3d environment for visual AI, CoRR abs/1712.05474 (2017).

[4] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub, J. Liu,
V. Koltun, J. Malik, D. Parikh and D. Batra, Habitat: A platform for embodied ai
research, in 2019 IEEE/CVF International Conference on Computer Vision (ICCV)
(IEEE Computer Society, Los Alamitos, CA, USA, nov 2019), pp. 9338–9346.

[5] M. Deitke, W. Han, A. Herrasti, A. Kembhavi, E. Kolve, R. Mottaghi, J. Salvador,
D. Schwenk, E. VanderBilt, M. Wallingford, L. Weihs, M. Yatskar and A. Farhadi,
Robothor: An open simulation-to-real embodied ai platform, in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE Computer
Society, Los Alamitos, CA, USA, jun 2020), pp. 3161–3171.

[6] B. Shen, F. Xia, C. Li, R. Mart́ın-Mart́ın, L. Fan, G. Wang, C. Pérez-D’Arpino,
S. Buch, S. Srivastava, L. Tchapmi, M. Tchapmi, K. Vainio, J. Wong, L. Fei-Fei
and S. Savarese, igibson 1.0: A simulation environment for interactive tasks in large
realistic scenes, in 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (Prague, Czech Republic, 2021), pp. 7520–7527.

[7] R. Geirhos, J.-H. Jacobsen, C. Michaelis, R. Zemel, W. Brendel, M. Bethge and F. A.
Wichmann, Shortcut learning in deep neural networks, Nature Machine Intelligence
2(11) 665–673 (2020).

[8] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba and P. Abbeel, Domain ran-
domization for transferring deep neural networks from simulation to the real world, in
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(Vancouver, BC, Canada, 2017), pp. 23–30.

[9] F. Sadeghi and S. Levine, (cad)$ˆ2$rl: Real single-image flight without a single real
image, CoRR abs/1611.04201 (2016).

[10] M. Deitke, E. VanderBilt, A. Herrasti, L. Weihs, K. Ehsani, J. Salvador, W. Han,
E. Kolve, A. Kembhavi and R. Mottaghi, Procthor: Large-scale embodied ai using
procedural generation, in Advances in Neural Information Processing Systems eds.
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho and A. Oh 35, (Curran
Associates, Inc., 2022), pp. 5982–5994.

[11] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niebner, M. Savva, S. Song, A. Zeng
and Y. Zhang, Matterport3d: Learning from rgb-d data in indoor environments, in
2017 International Conference on 3D Vision (3DV) (Qingdao, China, 2017), pp.
667–676.

[12] S. K. Ramakrishnan, A. Gokaslan, E. Wijmans, O. Maksymets, A. Clegg, J. M.
Turner, E. Undersander, W. Galuba, A. Westbury, A. X. Chang, M. Savva, Y. Zhao
and D. Batra, Habitat-matterport 3d dataset (HM3d): 1000 large-scale 3d environ-
ments for embodied AI, in Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2) (online, 2021).

[13] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu and M. Chen, Hierarchical text-
conditional image generation with clip latents, ArXiv abs/2204.06125 (2022).

[14] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen and

February 28, 2024 10:58 WSPC/INSTRUCTION FILE output

22 Dennis Hoftijzer, Gertjan Burghouts, Luuk Spreeuwers

I. Sutskever, Zero-shot text-to-image generation, in Proceedings of the 38th Inter-
national Conference on Machine Learning eds. M. Meila and T. Zhang Proceedings
of Machine Learning Research 139, (PMLR, 18–24 Jul 2021), pp. 8821–8831.

[15] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, G. Krueger and I. Sutskever, Learning transferable
visual models from natural language supervision, in Proceedings of the 38th Interna-
tional Conference on Machine Learning eds. M. Meila and T. Zhang Proceedings of
Machine Learning Research 139, (PMLR, 18–24 Jul 2021), pp. 8748–8763.

[16] S. Y. Gadre, M. Wortsman, G. Ilharco, L. Schmidt and S. Song, Clip on wheels:
Zero-shot object navigation as object localization and exploration, arXiv preprint
arXiv:2203.10421 (2022).

[17] D. Shah, B. Osiński, S. Levine et al., Lm-nav: Robotic navigation with large pre-
trained models of language, vision, and action, in 6th Annual Conference on Robot
Learning (Auckland, New Zealand, 2022).

[18] C. Huang, O. Mees, A. Zeng and W. Burgard, Visual language maps for robot navi-
gation, arXiv preprint arXiv:2210.05714 (2022).

[19] A. Majumdar, G. Aggarwal, B. Devnani, J. Hoffman and D. Batra, Zson: Zero-shot
object-goal navigation using multimodal goal embeddings (2022).

[20] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik and S. Savarese, Gibson env: Real-world
perception for embodied agents, in 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (Salt Lake City, UT, USA, 2018), pp. 9068–9079.

[21] K. Ehsani, W. Han, A. Herrasti, E. VanderBilt, L. Weihs, E. Kolve, A. Kembhavi
and R. Mottaghi, Manipulathor: A framework for visual object manipulation, CoRR
abs/2104.11213 (2021).

[22] M. Du, F. He, N. Zou, D. Tao and X. Hu, Shortcut learning of large language models
in natural language understanding (2023).

[23] S. Wang, R. Veldhuis, C. Brune and N. Strisciuglio, Frequency shortcut learning
in neural networks, in NeurIPS 2022 Workshop on Distribution Shifts: Connecting
Methods and Applications (New Orleans, USA, 2022).

[24] L. Scimeca, S. J. Oh, S. Chun, M. Poli and S. Yun, Which shortcut cues will dnns
choose? A study from the parameter-space perspective, CoRR abs/2110.03095
(2021).

[25] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann and W. Brendel,
Imagenet-trained cnns are biased towards texture; increasing shape bias improves
accuracy and robustness, CoRR abs/1811.12231 (2018).

[26] D. Gordon, A. Kadian, D. Parikh, J. Hoffman and D. Batra, Splitnet: Sim2sim and
task2task transfer for embodied visual navigation, in 2019 IEEE/CVF International
Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 -
November 2, 2019 (IEEE, 2019), pp. 1022–1031.

[27] L. Weihs, J. Salvador, K. Kotar, U. Jain, K. Zeng, R. Mottaghi and A. Kembhavi,
Allenact: A framework for embodied AI research, CoRR abs/2008.12760 (2020).

[28] E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh, M. Savva and
D. Batra, Decentralized distributed PPO: solving pointgoal navigation, CoRR
abs/1911.00357 (2019).

[29] J. Schulman, P. Moritz, S. Levine, M. I. Jordan and P. Abbeel, High-dimensional
continuous control using generalized advantage estimation, in 4th International Con-
ference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings eds. Y. Bengio and Y. LeCun (San Juan, Puerto
Rico, 2016).

	Introduction
	Related work
	Vision-Language for visual navigation
	Embodied AI simulators and scene datasets
	Shortcut learning

	ObjectNav preliminaries
	ObjectNav definition
	Evaluation metrics
	ProcTHOR

	O.o.d. test: interventions on ProcTHOR-10k
	Interventions on ProcTHOR-10k
	Evaluating o.o.d. generalization

	Method: Language-based Augmentation
	Experiments
	Experimental setup
	ObjectNav dataset details
	Agent architecture and configuration
	Reward setting
	Implementation details

	Impact of Shortcut Learning
	Analysis of agent's visual representations
	Analysis of L-B augmented representations
	Benefit of Proposed L-B Augmentations for navigation

	Conclusion and limitations
	Target object selection
	Distribution evaluation episodes
	Additional training details ObjectNav
	Visual representations analysis details
	Dataset of sampled observations
	Splitting into context/contextless
	Classifier training details

	Action space description

